Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
2024年度春学期 統計学 第6回 データの関係を知る(1) ー 相関関係 (2024. 5....
Search
Akira Asano
PRO
May 08, 2024
Education
0
180
2024年度春学期 統計学 第6回 データの関係を知る(1) ー 相関関係 (2024. 5. 16)
関西大学総合情報学部 統計学(担当・浅野晃)
http://racco.mikeneko.jp/Kougi/2024s/STAT/
Akira Asano
PRO
May 08, 2024
Tweet
Share
More Decks by Akira Asano
See All by Akira Asano
身近なデータサイエンス(2024. 7. 12 夙川高等学校出張講義)
akiraasano
PRO
1
23
2024年度春学期 統計学 第15回 分布についての仮説を検証する ― 仮説検定(2) (2024. 7. 18)
akiraasano
PRO
0
100
2024年度春学期 応用数学(解析)第15回 ルベーグ積分 (2024. 7. 18)
akiraasano
PRO
0
26
2024年度春学期 統計学 第14回 分布についての仮説を検証する ― 仮説検定(1) (2024. 7. 11)
akiraasano
PRO
0
110
2024年度春学期 応用数学(解析)第14回 ルベーグ測度と完全加法性 (2024. 7. 11)
akiraasano
PRO
0
35
2024年度春学期 応用数学(解析)第13回 孤立特異点と留数 (2024. 7. 4)
akiraasano
PRO
0
43
2024年度春学期 統計学 第13回 不確かな測定の不確かさを測る ― 不偏分散とt分布 (2024. 7. 4)
akiraasano
PRO
0
130
2024年度春学期 統計学 第12回 分布の平均を推測する ー 区間推定 (2024. 6. 27)
akiraasano
PRO
1
150
2024年度春学期 応用数学(解析)第12回 複素関数・正則関数 (2024. 6. 27)
akiraasano
PRO
0
56
Other Decks in Education
See All in Education
2023年度「生成AI100校プロジェクト」 実践報告書/The 2023 "Generative AI 100 Schools Project" Practical Report
codeforeveryone
0
1.4k
本の虫になろう
kenjiro56
0
100
英語学習から海外発表までの流れ
yasulab
18
4.1k
week7@tcue2024
nonxxxizm
0
640
20240810_ワンオペ社内勉強会のノウハウ
ponponmikankan
2
770
Epithelium Flashcards
ndevaul
0
840
ブームだけで終わらせない、組織内でコーチングを活用する方法/How to Use Coaching in Your Organization Without It Being Just a Fad
yuko_yokouchi
1
240
The Blockchain Game
jscottmo
0
3.4k
学習指導要領から職場の学びを考えてみる / Thinking about workplace learning from learning guidelines
aki_moon
1
480
week@tcue2024
nonxxxizm
0
500
Qualtricsで相互作用実験する「SMARTRIQS」実践編
kscscr
0
210
Contentless Marketing
jonoalderson
0
1.1k
Featured
See All Featured
Done Done
chrislema
180
16k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
34
1.9k
The World Runs on Bad Software
bkeepers
PRO
64
11k
The Pragmatic Product Professional
lauravandoore
30
6.2k
How to train your dragon (web standard)
notwaldorf
85
5.6k
The Brand Is Dead. Long Live the Brand.
mthomps
53
37k
ParisWeb 2013: Learning to Love: Crash Course in Emotional UX Design
dotmariusz
109
6.9k
Building an army of robots
kneath
302
42k
A designer walks into a library…
pauljervisheath
201
24k
How STYLIGHT went responsive
nonsquared
93
5.1k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
The Language of Interfaces
destraynor
153
23k
Transcript
関西大学総合情報学部 浅野 晃 統計学 2024年度春学期 第6回 データの関係を知る(1) ― 相関関係
多変量データと多変量解析💡💡
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 変量とは 3 「日本男性の身長は分布する」 分布する量(この例なら身長)を[変量]という 統計学とは, 「分布している変量から情報を引き出す手法」ということができる
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 例えば 「入学試験の点数」 ← 数学・英語・国語… 「多」変量とは 4 2つ以上の変量の組み合わせで表現されるデータを, [多変量データ]という
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 例えば 「入学試験の点数」 ← 数学・英語・国語… 「多」変量とは 4 2つ以上の変量の組み合わせで表現されるデータを, [多変量データ]という
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 例えば 「入学試験の点数」 ← 数学・英語・国語… 「多」変量とは 4 2つ以上の変量の組み合わせで表現されるデータを, [多変量データ]という
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 例えば 「入学試験の点数」 ← 数学・英語・国語… 「多」変量とは 4 2つ以上の変量の組み合わせで表現されるデータを, [多変量データ]という
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 例えば 「入学試験の点数」 ← 数学・英語・国語… 「多」変量とは 4 2つ以上の変量の組み合わせで表現されるデータを, [多変量データ]という 変量
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 例えば 「入学試験の点数」 ← 数学・英語・国語… 「多」変量とは 4 2つ以上の変量の組み合わせで表現されるデータを, [多変量データ]という 変量
変量
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 例えば 「入学試験の点数」 ← 数学・英語・国語… 「多」変量とは 4 2つ以上の変量の組み合わせで表現されるデータを, [多変量データ]という 変量
変量 変量
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 例えば 「入学試験の点数」 ← 数学・英語・国語… 「多」変量とは 4 2つ以上の変量の組み合わせで表現されるデータを, [多変量データ]という 変量
変量 変量 こういうデータが 多変量データ
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 例えば 「入学試験の点数」 ← 数学・英語・国語… 「多」変量とは 4 2つ以上の変量の組み合わせで表現されるデータを, [多変量データ]という 多変量データを扱う統計学を[多変量解析]という
変量 変量 変量 こういうデータが 多変量データ
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 多変量解析では 5 変量の間の関係が問題になる …という傾向にあるか? 数学の点数の高い人は 英語の点数も高い 数学の点数の高い人は 国語の点数が低い たとえば この傾向を見つけるのが,[相関分析][回帰分析]
※数学の点数の高い人は「必ず」英語の点数も高いのか? のではなくて, 数学の点数の高い人は「多くの場合」英語の点数も高いのか? ということ
相関関係と散布図🤔🤔
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 相関関係 7 2つの変量からなる多変量データを考える 「数学の点数の高い人は 英語の点数も高い」傾向にある 「数学の点数の高い人は 国語の点数が低い」傾向にある
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 相関関係 7 2つの変量からなる多変量データを考える 「数学の点数の高い人は 英語の点数も高い」傾向にある 「数学の点数の高い人は 国語の点数が低い」傾向にある 変量どうしの互いの増減の傾向を[相関関係]という
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 相関関係 7 2つの変量からなる多変量データを考える 「数学の点数の高い人は 英語の点数も高い」傾向にある 「数学の点数の高い人は 国語の点数が低い」傾向にある 変量どうしの互いの増減の傾向を[相関関係]という
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 相関関係 7 2つの変量からなる多変量データを考える 「数学の点数の高い人は 英語の点数も高い」傾向にある 「数学の点数の高い人は 国語の点数が低い」傾向にある 変量どうしの互いの増減の傾向を[相関関係]という
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 相関関係 7 2つの変量からなる多変量データを考える 「数学の点数の高い人は 英語の点数も高い」傾向にある 「数学の点数の高い人は 国語の点数が低い」傾向にある 変量どうしの互いの増減の傾向を[相関関係]という この場合,[正の相関関係]があるという
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 相関関係 7 2つの変量からなる多変量データを考える 「数学の点数の高い人は 英語の点数も高い」傾向にある 「数学の点数の高い人は 国語の点数が低い」傾向にある 変量どうしの互いの増減の傾向を[相関関係]という この場合,[正の相関関係]があるという
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 相関関係 7 2つの変量からなる多変量データを考える 「数学の点数の高い人は 英語の点数も高い」傾向にある 「数学の点数の高い人は 国語の点数が低い」傾向にある 変量どうしの互いの増減の傾向を[相関関係]という この場合,[正の相関関係]があるという
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 相関関係 7 2つの変量からなる多変量データを考える 「数学の点数の高い人は 英語の点数も高い」傾向にある 「数学の点数の高い人は 国語の点数が低い」傾向にある 変量どうしの互いの増減の傾向を[相関関係]という この場合,[正の相関関係]があるという この場合,[負の相関関係]があるという
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 散布図(scattergram) 8 多変量データを目に見えるように描く方法 地名 緯度(度) 気温(℃) 札幌 43.05
8.0 青森 40.82 9.6 秋田 39.72 11.0 仙台 38.27 11.9 福島 37.75 12.5 宇都宮 36.55 12.9 水戸 36.38 13.2 東京 35.68 15.3 新潟 37.92 13.1 長野 36.67 11.4 静岡 34.97 16.0 名古屋 35.17 14.9 大阪 34.68 16.2 鳥取 35.48 14.4 広島 34.40 15.0 高知 33.55 16.3 福岡 33.92 16.0 鹿児島 31.57 17.3 那覇 26.20 22.0 表 1: 日本の都市の緯度と気温 % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) 「各都市の緯度と気温」という多変量データを,散布図に描いてみる。 各々の点(マーク)が各々の都市を表す
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 散布図の描き方 9 多変量データを目に見えるように描く % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) 地名 緯度(度) 気温(℃) 札幌 43.05 8.0 青森 40 82 9 6 変量 変量 変量 変量
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 散布図の描き方 9 多変量データを目に見えるように描く % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) 地名 緯度(度) 気温(℃) 札幌 43.05 8.0 青森 40 82 9 6 変量 変量 変量 変量 「札幌」を散布図で表すには
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 散布図の描き方 9 多変量データを目に見えるように描く % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) 地名 緯度(度) 気温(℃) 札幌 43.05 8.0 青森 40 82 9 6 変量 変量 変量 変量 「札幌」を散布図で表すには
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 散布図の描き方 9 多変量データを目に見えるように描く % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) 地名 緯度(度) 気温(℃) 札幌 43.05 8.0 青森 40 82 9 6 変量 変量 変量 変量 「札幌」を散布図で表すには 43.05
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 散布図の描き方 9 多変量データを目に見えるように描く % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) 地名 緯度(度) 気温(℃) 札幌 43.05 8.0 青森 40 82 9 6 変量 変量 変量 変量 「札幌」を散布図で表すには 43.05
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 散布図の描き方 9 多変量データを目に見えるように描く % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) 地名 緯度(度) 気温(℃) 札幌 43.05 8.0 青森 40 82 9 6 変量 変量 変量 変量 「札幌」を散布図で表すには 43.05 8.0
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 散布図の描き方 9 多変量データを目に見えるように描く % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) 地名 緯度(度) 気温(℃) 札幌 43.05 8.0 青森 40 82 9 6 変量 変量 変量 変量 「札幌」を散布図で表すには 43.05 8.0
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 散布図の描き方 9 多変量データを目に見えるように描く % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) 地名 緯度(度) 気温(℃) 札幌 43.05 8.0 青森 40 82 9 6 変量 変量 変量 変量 「札幌」を散布図で表すには 43.05 8.0
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 散布図の描き方 9 多変量データを目に見えるように描く % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) 地名 緯度(度) 気温(℃) 札幌 43.05 8.0 青森 40 82 9 6 変量 変量 変量 変量 「札幌」を表すマークを ここに打つ 「札幌」を散布図で表すには 43.05 8.0
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 散布図と相関関係 10 % % % % % %
% % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 散布図と相関関係 10 % % % % % %
% % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 散布図と相関関係 10 % % % % % %
% % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) 各都市が右下がりに並んでいる
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 散布図と相関関係 10 % % % % % %
% % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) 各都市が右下がりに並んでいる 緯度が上がると気温が下がる傾向を表す
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 散布図と相関関係 10 % % % % % %
% % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) 各都市が右下がりに並んでいる 緯度が上がると気温が下がる傾向を表す [負の相関関係]を表す
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 相関の強弱 11 どちらも正の相関関係だが,強い相関と弱い相関がある x y y x x
y y x ほぼ完全に,一直線上に並んでいる 直線に沿って並んではいるが, まわりに広がっている
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 相関の強弱 11 どちらも正の相関関係だが,強い相関と弱い相関がある x y y x x
y y x ほぼ完全に,一直線上に並んでいる 直線に沿って並んではいるが, まわりに広がっている
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 相関の強弱 11 どちらも正の相関関係だが,強い相関と弱い相関がある [強い相関] x y y x
x y y x ほぼ完全に,一直線上に並んでいる 直線に沿って並んではいるが, まわりに広がっている
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 相関の強弱 11 どちらも正の相関関係だが,強い相関と弱い相関がある [強い相関] x y y x
x y y x ほぼ完全に,一直線上に並んでいる 直線に沿って並んではいるが, まわりに広がっている
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 相関の強弱 11 どちらも正の相関関係だが,強い相関と弱い相関がある [強い相関] [弱い相関] x y y
x x y y x ほぼ完全に,一直線上に並んでいる 直線に沿って並んではいるが, まわりに広がっている
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 相関の強弱 12 右上がりでも右下がりでもない場合は x x y y
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 相関の強弱 12 右上がりでも右下がりでもない場合は x x y y
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 相関の強弱 12 右上がりでも右下がりでもない場合は [相関関係なし] x x y y
[無相関]
共分散と相関係数🤔🤔
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 相関係数 14 相関の正負・強弱を数字で表す % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) ここからは,緯度・気温ではなく一般的に
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 相関係数 14 相関の正負・強弱を数字で表す % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x ここからは,緯度・気温ではなく一般的に
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 相関係数 14 相関の正負・強弱を数字で表す % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y ここからは,緯度・気温ではなく一般的に
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 相関係数 14 相関の正負・強弱を数字で表す % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y xi ここからは,緯度・気温ではなく一般的に
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 相関係数 14 相関の正負・強弱を数字で表す % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y xi yi ここからは,緯度・気温ではなく一般的に
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 相関係数 14 相関の正負・強弱を数字で表す % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y で表す (xi , yi ) xi yi ここからは,緯度・気温ではなく一般的に
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 相関係数 14 相関の正負・強弱を数字で表す % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y で表す (xi , yi ) xi yi ここからは,緯度・気温ではなく一般的に [個体] は 番目の個体 (xi , yi ) i
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 相関係数 14 相関の正負・強弱を数字で表す % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y で表す (xi , yi ) xi yi ¯ x ここからは,緯度・気温ではなく一般的に [個体] は 番目の個体 (xi , yi ) i
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 相関係数 14 相関の正負・強弱を数字で表す % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y で表す (xi , yi ) xi yi ¯ x ¯ y ここからは,緯度・気温ではなく一般的に [個体] は 番目の個体 (xi , yi ) i
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 相関係数 14 相関の正負・強弱を数字で表す % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y で表す (xi , yi ) xi yi ¯ x ¯ y ¯ x ¯ y だけの平均 x だけの平均 y ここからは,緯度・気温ではなく一般的に [個体] は 番目の個体 (xi , yi ) i
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 相関係数 15 rxy = n i=1 (xi −
¯ x)(yi − ¯ y)/n n i=1 (xi − ¯ x)2/n n i=1 (yi − ¯ y)2/n [相関係数] 相関の正負・強弱を数字で表す
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 相関係数 15 rxy = n i=1 (xi −
¯ x)(yi − ¯ y)/n n i=1 (xi − ¯ x)2/n n i=1 (yi − ¯ y)2/n [相関係数] ( はデータサイズ) n 相関の正負・強弱を数字で表す
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 相関係数 15 rxy = n i=1 (xi −
¯ x)(yi − ¯ y)/n n i=1 (xi − ¯ x)2/n n i=1 (yi − ¯ y)2/n [相関係数] ( はデータサイズ) n 相関の正負・強弱を数字で表す
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 相関係数 15 rxy = n i=1 (xi −
¯ x)(yi − ¯ y)/n n i=1 (xi − ¯ x)2/n n i=1 (yi − ¯ y)2/n [相関係数] の平均 x ( はデータサイズ) n 相関の正負・強弱を数字で表す
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 相関係数 15 rxy = n i=1 (xi −
¯ x)(yi − ¯ y)/n n i=1 (xi − ¯ x)2/n n i=1 (yi − ¯ y)2/n [相関係数] の平均 x の偏差 x ( はデータサイズ) n 相関の正負・強弱を数字で表す
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 相関係数 15 rxy = n i=1 (xi −
¯ x)(yi − ¯ y)/n n i=1 (xi − ¯ x)2/n n i=1 (yi − ¯ y)2/n [相関係数] の平均 x の偏差 x の分散 x ( はデータサイズ) n 相関の正負・強弱を数字で表す
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 相関係数 15 rxy = n i=1 (xi −
¯ x)(yi − ¯ y)/n n i=1 (xi − ¯ x)2/n n i=1 (yi − ¯ y)2/n [相関係数] の平均 x の偏差 x の分散 x の標準偏差 x ( はデータサイズ) n 相関の正負・強弱を数字で表す
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 相関係数 15 rxy = n i=1 (xi −
¯ x)(yi − ¯ y)/n n i=1 (xi − ¯ x)2/n n i=1 (yi − ¯ y)2/n [相関係数] の平均 x の偏差 x の分散 x の標準偏差 x ( はデータサイズ) n 相関の正負・強弱を数字で表す
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 相関係数 15 rxy = n i=1 (xi −
¯ x)(yi − ¯ y)/n n i=1 (xi − ¯ x)2/n n i=1 (yi − ¯ y)2/n [相関係数] の平均 x の偏差 x の分散 x の標準偏差 x の標準偏差 y ( はデータサイズ) n 相関の正負・強弱を数字で表す
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 相関係数 15 rxy = n i=1 (xi −
¯ x)(yi − ¯ y)/n n i=1 (xi − ¯ x)2/n n i=1 (yi − ¯ y)2/n [相関係数] の平均 x の偏差 x の分散 x の標準偏差 x の標準偏差 y ( はデータサイズ) n の偏差 x 相関の正負・強弱を数字で表す
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 相関係数 15 rxy = n i=1 (xi −
¯ x)(yi − ¯ y)/n n i=1 (xi − ¯ x)2/n n i=1 (yi − ¯ y)2/n [相関係数] の平均 x の偏差 x の分散 x の標準偏差 x の標準偏差 y ( はデータサイズ) n の偏差 x の偏差 y 相関の正負・強弱を数字で表す
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 相関係数 15 rxy = n i=1 (xi −
¯ x)(yi − ¯ y)/n n i=1 (xi − ¯ x)2/n n i=1 (yi − ¯ y)2/n [相関係数] の平均 x の偏差 x の分散 x の標準偏差 x の標準偏差 y ( はデータサイズ) n の[共分散] x, y の偏差 x の偏差 y 相関の正負・強弱を数字で表す
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 共分散の意味 16 の共分散 x, y の偏差 x の偏差
y n i=1 (xi − ¯ x)(yi − ¯ y)/n ¯ y イ ロ ハ ニ イ・ロ・ハ・ニで (xi − ¯ x)(yi − ¯ y) の値はどうなる? x y y x (イ) (ロ) (ハ) (ニ)
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 x y y x (イ) (ロ) (ハ) (ニ)
共分散の意味 17 ¯ x ¯ y イ (xi , yi ) + が「イ」の領域にあるとすると (xi , yi ) xi − ¯ x > 0, xi yi yi − ¯ y > 0 で (xi − ¯ x)(yi − ¯ y) > 0
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 x y y x (イ) (ロ) (ハ) (ニ)
共分散の意味 18 ¯ x ¯ y ハ (xi , yi ) + が「ハ」の領域にあるとすると (xi , yi ) xi yi (xi − ¯ x)(yi − ¯ y) > 0 xi − ¯ x < 0, yi − ¯ y < 0
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 共分散の意味 19 の場所によって (xi , yi ) x
y イ ロ ハ ニ x y y x (イ) (ロ) (ハ) (ニ) (xi − ¯ x)(yi − ¯ y) > 0 (xi − ¯ x)(yi − ¯ y) > 0 (xi − ¯ x)(yi − ¯ y) < 0 (xi − ¯ x)(yi − ¯ y) < 0 が から離れているほど,絶対値が大きくなる (xi , yi ) (¯ x, ¯ y)
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 共分散の意味 20 n i=1 (xi − ¯ x)(yi
− ¯ y)/n は ¯ x ¯ y x ¯ y x y y x x y y x
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 共分散の意味 20 n i=1 (xi − ¯ x)(yi
− ¯ y)/n は ¯ x ¯ y x ¯ y x y y x x y y x +
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 共分散の意味 20 n i=1 (xi − ¯ x)(yi
− ¯ y)/n は ¯ x ¯ y x ¯ y x y y x x y y x + +
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 共分散の意味 20 n i=1 (xi − ¯ x)(yi
− ¯ y)/n は ¯ x ¯ y x ¯ y x y y x x y y x + + –
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 共分散の意味 20 n i=1 (xi − ¯ x)(yi
− ¯ y)/n は ¯ x ¯ y x ¯ y x y y x x y y x + + – –
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 共分散の意味 20 正で大きな値 →強い正の相関? n i=1 (xi −
¯ x)(yi − ¯ y)/n は ¯ x ¯ y x ¯ y x y y x x y y x + + – –
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 共分散の意味 20 正で大きな値 →強い正の相関? n i=1 (xi −
¯ x)(yi − ¯ y)/n は ¯ x ¯ y x ¯ y x y y x x y y x + + – – –
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 共分散の意味 20 正で大きな値 →強い正の相関? n i=1 (xi −
¯ x)(yi − ¯ y)/n は ¯ x ¯ y x ¯ y x y y x x y y x + + – – – –
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 共分散の意味 20 正で大きな値 →強い正の相関? n i=1 (xi −
¯ x)(yi − ¯ y)/n は ¯ x ¯ y x ¯ y x y y x x y y x + + – – – – +
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 共分散の意味 20 正で大きな値 →強い正の相関? n i=1 (xi −
¯ x)(yi − ¯ y)/n は ¯ x ¯ y x ¯ y x y y x x y y x + + – – – – + +
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 共分散の意味 20 正で大きな値 →強い正の相関? n i=1 (xi −
¯ x)(yi − ¯ y)/n は ¯ x ¯ y x ¯ y 負で絶対値が大きい →強い負の相関? x y y x x y y x + + – – – – + +
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 共分散の意味 21 ¯ x ¯ y x y
y x ¯ x ¯ y x y y x + + – – + + – – – n i=1 (xi − ¯ x)(yi − ¯ y)/n は
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 共分散の意味 21 正で大きな値 →強い正の相関? ¯ x ¯ y
x y y x ¯ x ¯ y x y y x + + – – + + – – – n i=1 (xi − ¯ x)(yi − ¯ y)/n は
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 共分散の意味 21 正で大きな値 →強い正の相関? 正だが大きくない →弱い正の相関? ¯ x
¯ y x y y x ¯ x ¯ y x y y x + + – – + + – – – n i=1 (xi − ¯ x)(yi − ¯ y)/n は
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 共分散の意味 22 ¯ x ¯ y 差し引きゼロ →無相関
x x y y + – + – n i=1 (xi − ¯ x)(yi − ¯ y)/n は
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 さっき?がついていたのはー共分散と相関係数 23 しかし,これらの相関の強さは同じ → そうなるように,標準偏差で割って調整したのが,相関係数 相関係数=共分散 ÷
(x の標準偏差 × y の標準偏差) 相関係数は -1〜0〜1の 範囲にある x y y x x y y x 左のほうが, ともよりばらついているので,共分散は左のほうが大きい x, y
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 中くらいの相関 24 こちらが「中くらいの相関」 相関係数 0.5 x y x
y 相関係数 0.7 こうである理由, また「中くらい」の意味は, 次回説明します 相関係数が-1〜0〜1の範囲なら,相関係数0.5は中くらいの相関?
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 テキストでは 25 数字を入れるだけで計算できてしまうと, 大失敗をする可能性がある こんな表で,長野〜鹿児島の緯度と気温の相関係数を求めています 表 2: 相関係数を求める
地名 緯度(度) 気温(℃) 緯度の偏差 左の 2 乗 気温の偏差 左の 2 乗 両偏差の積 長野 36.67 11.4 2.18 4.752 −3.878 15.037 −8.454 静岡 34.97 16.0 0.48 0.230 0.722 0.522 0.347 名古屋 35.17 14.9 0.68 0.462 −0.378 0.143 −0.257 大阪 34.68 16.2 0.19 0.036 0.922 0.850 0.175 鳥取 35.48 14.4 0.99 0.980 −0.878 0.770 −0.869 広島 34.40 15.0 −0.09 0.008 −0.278 0.077 0.025 高知 33.55 16.3 −0.94 0.884 1.022 1.045 −0.961 福岡 33.92 16.0 −0.57 0.325 0.722 0.522 −0.412 鹿児島 31.57 17.3 −2.92 8.526 2.022 4.089 −5.905 緯度の平均 気温の平均 緯度の分散 気温の分散 共分散 = 34.49 = 15.278 = 1.800 = 2.562 = −1.812 相関係数 = −0.844 現在では,こういう手計算を行うことは まずありません。ただ, 相関係数 -0.844 ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) 散布図を見て,妥当な数値か どうか確かめましょう。
ちょっと問題🤔🤔
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 問題1 27 国民所得と酒の消費量の間には正の相関がある。 だから,国民が酒🍶🍶🍷🍷をたくさん飲めば所得が増える? 🤔🤔
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 問題1 27 国民所得と酒の消費量の間には正の相関がある。 だから,国民が酒🍶🍶🍷🍷をたくさん飲めば所得が増える? 🤔🤔 相関関係と因果関係は,別の概念である。
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 問題1 27 国民所得と酒の消費量の間には正の相関がある。 だから,国民が酒🍶🍶🍷🍷をたくさん飲めば所得が増える? 🤔🤔 相関関係と因果関係は,別の概念である。 2つの変量の間に相関関係がある,といっても, それはどちらがどちらの原因であるともいっていないし,
両者の間に因果関係があるかないかもいっていない。
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 問題2 28 ある電気製品の普及台数は,発売以来毎年倍に増えている。 発売後の年数と普及台数の相関係数は,非常に強い相関であるから, ほぼ1である。
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 問題2 28 ある電気製品の普及台数は,発売以来毎年倍に増えている。 発売後の年数と普及台数の相関係数は,非常に強い相関であるから, ほぼ1である。 直線状の関係ではないから,相関係数が1にはならない。
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 対数目盛り 29 10 20 201314 15 16 40
60 80 年 台数(万台) 「毎年倍になっている」
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 対数目盛り 29 10 20 201314 15 16 40
60 80 年 台数(万台) 「毎年倍になっている」
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 対数目盛り 29 10 20 201314 15 16 40
60 80 年 台数(万台) 「毎年倍になっている」
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 対数目盛り 29 10 20 201314 15 16 40
60 80 年 台数(万台) 「毎年倍になっている」
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 対数目盛り 29 10 20 201314 15 16 40
60 80 年 台数(万台) 「毎年倍になっている」
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 対数目盛り 29 10 20 201314 15 16 40
60 80 年 台数(万台) 「毎年倍になっている」
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 対数目盛り 29 10 20 201314 15 16 40
60 80 年 台数(万台) 「毎年倍になっている」 直線の関係には ない
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 対数目盛り 29 10 20 201314 15 16 40
60 80 年 台数(万台) 「毎年倍になっている」 直線の関係には ない 10 201314 15 16 20 40 80 年 台数(万台) 縦軸を1目盛で「2倍」を表す 対数目盛りに変える
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 対数目盛り 29 10 20 201314 15 16 40
60 80 年 台数(万台) 「毎年倍になっている」 直線の関係には ない 10 201314 15 16 20 40 80 年 台数(万台) 縦軸を1目盛で「2倍」を表す 対数目盛りに変える
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 対数目盛り 29 10 20 201314 15 16 40
60 80 年 台数(万台) 「毎年倍になっている」 直線の関係には ない 10 201314 15 16 20 40 80 年 台数(万台) 縦軸を1目盛で「2倍」を表す 対数目盛りに変える 対数目盛りなら 直線の関係にある
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 感染症の感染者数のグラフ 30 対数目盛りは,感染者数のグラフに用いられている 感染では,「倍率」が問題になるため。 たとえば, それぞれの感染者が1日に2人に感染させると, 新たに感染した人(新規感染者)の数は 毎日2倍になる
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 感染症の感染者数のグラフ 30 対数目盛りは,感染者数のグラフに用いられている 感染では,「倍率」が問題になるため。 たとえば, それぞれの感染者が1日に2人に感染させると, 新たに感染した人(新規感染者)の数は 毎日2倍になる
1日め
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 感染症の感染者数のグラフ 30 対数目盛りは,感染者数のグラフに用いられている 感染では,「倍率」が問題になるため。 たとえば, それぞれの感染者が1日に2人に感染させると, 新たに感染した人(新規感染者)の数は 毎日2倍になる
1日め 感染者1人
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 感染症の感染者数のグラフ 30 対数目盛りは,感染者数のグラフに用いられている 感染では,「倍率」が問題になるため。 たとえば, それぞれの感染者が1日に2人に感染させると, 新たに感染した人(新規感染者)の数は 毎日2倍になる
1日め 感染者1人 2人に感染させる
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 感染症の感染者数のグラフ 30 対数目盛りは,感染者数のグラフに用いられている 感染では,「倍率」が問題になるため。 たとえば, それぞれの感染者が1日に2人に感染させると, 新たに感染した人(新規感染者)の数は 毎日2倍になる
1日め 2日め 感染者1人 2人に感染させる
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 感染症の感染者数のグラフ 30 対数目盛りは,感染者数のグラフに用いられている 感染では,「倍率」が問題になるため。 たとえば, それぞれの感染者が1日に2人に感染させると, 新たに感染した人(新規感染者)の数は 毎日2倍になる
1日め 2日め 感染者1人 2人に感染させる
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 感染症の感染者数のグラフ 30 対数目盛りは,感染者数のグラフに用いられている 感染では,「倍率」が問題になるため。 たとえば, それぞれの感染者が1日に2人に感染させると, 新たに感染した人(新規感染者)の数は 毎日2倍になる
1日め 2日め 感染者1人 2人に感染させる
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 感染症の感染者数のグラフ 30 対数目盛りは,感染者数のグラフに用いられている 感染では,「倍率」が問題になるため。 たとえば, それぞれの感染者が1日に2人に感染させると, 新たに感染した人(新規感染者)の数は 毎日2倍になる
1日め 2日め 感染者1人 2人に感染させる
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 感染症の感染者数のグラフ 30 対数目盛りは,感染者数のグラフに用いられている 感染では,「倍率」が問題になるため。 たとえば, それぞれの感染者が1日に2人に感染させると, 新たに感染した人(新規感染者)の数は 毎日2倍になる
1日め 2日め 3日め 感染者1人 2人に感染させる
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 感染症の感染者数のグラフ 30 対数目盛りは,感染者数のグラフに用いられている 感染では,「倍率」が問題になるため。 たとえば, それぞれの感染者が1日に2人に感染させると, 新たに感染した人(新規感染者)の数は 毎日2倍になる
1日め 2日め 3日め 感染者1人 2人に感染させる
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 感染症の感染者数のグラフ 30 対数目盛りは,感染者数のグラフに用いられている 感染では,「倍率」が問題になるため。 たとえば, それぞれの感染者が1日に2人に感染させると, 新たに感染した人(新規感染者)の数は 毎日2倍になる
1日め 2日め 3日め 感染者1人 2人に感染させる
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 感染症の感染者数のグラフ 30 対数目盛りは,感染者数のグラフに用いられている 感染では,「倍率」が問題になるため。 たとえば, それぞれの感染者が1日に2人に感染させると, 新たに感染した人(新規感染者)の数は 毎日2倍になる
1日め 2日め 3日め 4日め 感染者1人 2人に感染させる
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 感染症の感染者数のグラフ 30 対数目盛りは,感染者数のグラフに用いられている 感染では,「倍率」が問題になるため。 たとえば, それぞれの感染者が1日に2人に感染させると, 新たに感染した人(新規感染者)の数は 毎日2倍になる
1日め 2日め 3日め 4日め 感染者1人 2人に感染させる
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 感染者数のグラフ 31 対数目盛りは,感染者数のグラフに用いられている たとえば,それぞれの感染者が1日に2人に感染させると, 新たに感染した人の数は毎日2倍になる 1 1 2
3 4 2 4 日数 新規感染者数 8
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 感染者数のグラフ 31 対数目盛りは,感染者数のグラフに用いられている たとえば,それぞれの感染者が1日に2人に感染させると, 新たに感染した人の数は毎日2倍になる 1 1 2
3 4 2 4 日数 新規感染者数 8
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 感染者数のグラフ 31 対数目盛りは,感染者数のグラフに用いられている たとえば,それぞれの感染者が1日に2人に感染させると, 新たに感染した人の数は毎日2倍になる 1 1 2
3 4 2 4 日数 新規感染者数 対数目盛で直線の関係になる 8
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 感染者数のグラフ 31 対数目盛りは,感染者数のグラフに用いられている たとえば,それぞれの感染者が1日に2人に感染させると, 新たに感染した人の数は毎日2倍になる 1 1 2
3 4 2 4 日数 新規感染者数 対数目盛で直線の関係になる 8 直線の傾きが 感染者が増える倍率を表す
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 感染者数のグラフ 31 対数目盛りは,感染者数のグラフに用いられている たとえば,それぞれの感染者が1日に2人に感染させると, 新たに感染した人の数は毎日2倍になる 1 1 2
3 4 2 4 日数 新規感染者数 対数目盛で直線の関係になる 8 直線の傾きが 感染者が増える倍率を表す 倍率が1未満になると,直線は右下がりになり, 感染者は減っていく
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 感染者数のグラフ 31 対数目盛りは,感染者数のグラフに用いられている たとえば,それぞれの感染者が1日に2人に感染させると, 新たに感染した人の数は毎日2倍になる 1 1 2
3 4 2 4 日数 新規感染者数 対数目盛で直線の関係になる 8 直線の傾きが 感染者が増える倍率を表す 倍率が1未満になると,直線は右下がりになり, 感染者は減っていく ※ ウェブサイトの【参考リンク】にある “Coronavirus tracked”では, 縦軸を通常の線形目盛(linear)と 対数目盛(logarithmic)に切り替 えることができます。
みかけ上の相関🤔🤔
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 みかけ上の相関 33 小学生については,身体が大きいと試験の成績が良い
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 みかけ上の相関 33 小学生については,身体が大きいと試験の成績が良い ???
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 みかけ上の相関 33 小学生については,身体が大きいと試験の成績が良い ??? 全学年の児童に同じ問題で試験をすれば。🌀🌀
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 みかけ上の相関 33 小学生については,身体が大きいと試験の成績が良い ??? 全学年の児童に同じ問題で試験をすれば。🌀🌀 しかし,たしかに 「体格」と「成績」には正の相関関係
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 みかけ上の相関 33 小学生については,身体が大きいと試験の成績が良い ??? 全学年の児童に同じ問題で試験をすれば。🌀🌀 しかし,たしかに 「体格」と「成績」には正の相関関係 どうなってるの?
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 みかけ上の相関 34 どうなってるの? 体格 成績 正の相関関係
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 みかけ上の相関 34 どうなってるの? 体格 成績 学年 正の相関関係
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 みかけ上の相関 34 どうなってるの? 体格 成績 学年 正の相関関係 正の相関関係
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 みかけ上の相関 34 どうなってるの? 体格 成績 学年 正の相関関係 正の相関関係
正の相関関係
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 みかけ上の相関 34 どうなってるの? 体格 成績 学年 正の相関関係 正の相関関係
正の相関関係 みかけ上の (疑似相関)
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 層別 35 成績 体格 正の相関関係
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 層別 35 実は 成績 体格 正の相関関係
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 層別 35 実は 成績 体格 正の相関関係 成績 体格
6年 5年 4年 3年 2年 1年 層内の相関は ない
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 層別 35 実は 内部に「学年」の層がある 成績 体格 正の相関関係 成績
体格 6年 5年 4年 3年 2年 1年 層内の相関は ない
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 層別 36 内部に「学年」の層がある 成績 体格 6年 5年 4年
3年 2年 1年 層内の相関は ない 成績 体格 6年 5年 4年 3年 2年 1年 各層を1か所に まとめる 層に分けて,ひとつにまとめる
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 層別 36 内部に「学年」の層がある 成績 体格 6年 5年 4年
3年 2年 1年 層内の相関は ない 成績 体格 6年 5年 4年 3年 2年 1年 各層を1か所に まとめる 層に分けて,ひとつにまとめる このようにして学年の影響を除いたのが[偏相関係数]
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 ところで 37 こうはならないの? 体格 成績 学年 正の相関関係? 正の相関関係
みかけ上の 正の相関関係
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 ところで 37 こうはならないの? 体格 成績 学年 正の相関関係? 正の相関関係
みかけ上の 正の相関関係 統計学の上では,こう考えても同じ
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 ところで 37 こうはならないの? 体格 成績 学年 正の相関関係? 正の相関関係
みかけ上の 正の相関関係 統計学の上では,こう考えても同じ ならないのは,別の知識による
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 「みかけ上の」とは? 38 「嘘の相関」ではない。 相関関係は本当にある 体格 成績 「この現象が起きているしくみ」を 考えないなら, (小学生の)体格から成績を
推測できる
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 「みかけ上の」とは? 38 「嘘の相関」ではない。 相関関係は本当にある 体格 成績 「この現象が起きているしくみ」を 考えないなら, (小学生の)体格から成績を
推測できる 「しくみ」を考えるなら,
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 「みかけ上の」とは? 38 「嘘の相関」ではない。 相関関係は本当にある 体格 成績 学年 「この現象が起きているしくみ」を 考えないなら,
(小学生の)体格から成績を 推測できる 「しくみ」を考えるなら,
38 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 「みかけ上の」とは? 38 「嘘の相関」ではない。 相関関係は本当にある 体格 成績 学年 「この現象が起きているしくみ」を 考えないなら,
(小学生の)体格から成績を 推測できる 「しくみ」を考えるなら, 体格が大きい (→学年が上だろう) →成績がいいだろう