Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
NumPyPy, RCOS - February, 2012
Search
Alex Gaynor
February 17, 2012
Programming
1
320
NumPyPy, RCOS - February, 2012
Alex Gaynor
February 17, 2012
Tweet
Share
More Decks by Alex Gaynor
See All by Alex Gaynor
Quantifying Memory Unsafety and Reactions to It
alex
0
91
Learning from Failure: Post-mortems
alex
2
290
The cobbler's children have no shoes, or building better tools for ourselves
alex
1
250
Techniques for Debugging Hard Problems
alex
1
560
Building Communities with Code Review
alex
4
270
Documenting Domain Specific Knowledge
alex
1
360
Pickles are for Delis, not for Software
alex
0
340
Code Review in Open Source Software
alex
4
750
Why Ruby isn't slow
alex
10
3.8k
Other Decks in Programming
See All in Programming
ruby.wasmで多人数リアルタイム通信ゲームを作ろう
lnit
2
270
deno-redisの紹介とJSRパッケージの運用について (toranoana.deno #21)
uki00a
0
150
Webの外へ飛び出せ NativePHPが切り拓くPHPの未来
takuyakatsusa
2
380
Julia という言語について (FP in Julia « SIDE: F ») for 関数型まつり2025
antimon2
3
980
Elixir で IoT 開発、 Nerves なら簡単にできる!?
pojiro
1
150
ASP.NETアプリケーションのモダナイズ インフラ編
tomokusaba
1
420
設計やレビューに悩んでいるPHPerに贈る、クリーンなオブジェクト設計の指針たち
panda_program
6
1.5k
Railsアプリケーションと パフォーマンスチューニング ー 秒間5万リクエストの モバイルオーダーシステムを支える事例 ー Rubyセミナー 大阪
falcon8823
4
950
High-Level Programming Languages in AI Era -Human Thought and Mind-
hayat01sh1da
PRO
0
430
AIエージェントはこう育てる - GitHub Copilot Agentとチームの共進化サイクル
koboriakira
0
390
git worktree × Claude Code × MCP ~生成AI時代の並列開発フロー~
hisuzuya
1
480
AIプログラマーDevinは PHPerの夢を見るか?
shinyasaita
1
130
Featured
See All Featured
Speed Design
sergeychernyshev
32
1k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
20
1.3k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Rails Girls Zürich Keynote
gr2m
94
14k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3k
GraphQLとの向き合い方2022年版
quramy
48
14k
Bash Introduction
62gerente
614
210k
Facilitating Awesome Meetings
lara
54
6.4k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
8
670
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.5k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
5.9k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
107
19k
Transcript
Hi.
NumPy PyPy NumPyPy Fortran
A tale of two Pythons
First, there was CPython. And it was OK.
And then there was PyPy. And it was pretty good.
And scientists thought it was pretty good. But there was
also NumPy
And they thought it was swell. So the developers crafted
NumPyPy.
Wat? But there was also Fortran.
More than programmers. Scientists like Fortran.
And that brings us to this semester.
ctypes
MORE FORTRAN
None
>>> import numpypy >>> class X(numpypy.ndarray): ... pass ... >>>
numpypy.ndarray(10) array([ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) >>> X(10) array([ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) >>> type(X(10)) <type 'numpypy.ndarray'>
הבר הדות Danke schön Muchas Gracias Questions? Thank you!