Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
NumPyPy, RCOS - February, 2012
Search
Alex Gaynor
February 17, 2012
Programming
1
330
NumPyPy, RCOS - February, 2012
Alex Gaynor
February 17, 2012
Tweet
Share
More Decks by Alex Gaynor
See All by Alex Gaynor
Quantifying Memory Unsafety and Reactions to It
alex
0
110
Learning from Failure: Post-mortems
alex
2
300
The cobbler's children have no shoes, or building better tools for ourselves
alex
1
270
Techniques for Debugging Hard Problems
alex
1
610
Building Communities with Code Review
alex
4
310
Documenting Domain Specific Knowledge
alex
1
400
Pickles are for Delis, not for Software
alex
0
470
Code Review in Open Source Software
alex
4
790
Why Ruby isn't slow
alex
10
3.8k
Other Decks in Programming
See All in Programming
生成AI時代を勝ち抜くエンジニア組織マネジメント
coconala_engineer
0
35k
Vibe codingでおすすめの言語と開発手法
uyuki234
0
140
Go コードベースの構成と AI コンテキスト定義
andpad
0
150
Java 25, Nuevas características
czelabueno
0
120
ZJIT: The Ruby 4 JIT Compiler / Ruby Release 30th Anniversary Party
k0kubun
1
300
脳の「省エネモード」をデバッグする ~System 1(直感)と System 2(論理)の切り替え~
panda728
PRO
0
130
【卒業研究】会話ログ分析によるユーザーごとの関心に応じた話題提案手法
momok47
0
150
ゆくKotlin くるRust
exoego
1
180
ローカルLLMを⽤いてコード補完を⾏う VSCode拡張機能を作ってみた
nearme_tech
PRO
0
210
안드로이드 9년차 개발자, 프론트엔드 주니어로 커리어 리셋하기
maryang
1
140
リリース時」テストから「デイリー実行」へ!開発マネージャが取り組んだ、レガシー自動テストのモダン化戦略
goataka
0
150
JETLS.jl ─ A New Language Server for Julia
abap34
2
470
Featured
See All Featured
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
Optimizing for Happiness
mojombo
379
70k
Side Projects
sachag
455
43k
The untapped power of vector embeddings
frankvandijk
1
1.5k
Getting science done with accelerated Python computing platforms
jacobtomlinson
0
84
How to Grow Your eCommerce with AI & Automation
katarinadahlin
PRO
0
80
The Impact of AI in SEO - AI Overviews June 2024 Edition
aleyda
5
680
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
51k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.2k
B2B Lead Gen: Tactics, Traps & Triumph
marketingsoph
0
35
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
61
47k
Transcript
Hi.
NumPy PyPy NumPyPy Fortran
A tale of two Pythons
First, there was CPython. And it was OK.
And then there was PyPy. And it was pretty good.
And scientists thought it was pretty good. But there was
also NumPy
And they thought it was swell. So the developers crafted
NumPyPy.
Wat? But there was also Fortran.
More than programmers. Scientists like Fortran.
And that brings us to this semester.
ctypes
MORE FORTRAN
None
>>> import numpypy >>> class X(numpypy.ndarray): ... pass ... >>>
numpypy.ndarray(10) array([ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) >>> X(10) array([ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) >>> type(X(10)) <type 'numpypy.ndarray'>
הבר הדות Danke schön Muchas Gracias Questions? Thank you!