Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
NumPyPy, RCOS - February, 2012
Search
Alex Gaynor
February 17, 2012
Programming
1
330
NumPyPy, RCOS - February, 2012
Alex Gaynor
February 17, 2012
Tweet
Share
More Decks by Alex Gaynor
See All by Alex Gaynor
Quantifying Memory Unsafety and Reactions to It
alex
0
92
Learning from Failure: Post-mortems
alex
2
290
The cobbler's children have no shoes, or building better tools for ourselves
alex
1
260
Techniques for Debugging Hard Problems
alex
1
570
Building Communities with Code Review
alex
4
280
Documenting Domain Specific Knowledge
alex
1
380
Pickles are for Delis, not for Software
alex
0
350
Code Review in Open Source Software
alex
4
760
Why Ruby isn't slow
alex
10
3.8k
Other Decks in Programming
See All in Programming
DockerからECSへ 〜 AWSの海に出る前に知っておきたいこと 〜
ota1022
5
1.8k
フロントエンドのmonorepo化と責務分離のリアーキテクト
kajitack
2
140
【第4回】関東Kaggler会「Kaggleは執筆に役立つ」
mipypf
0
860
MCPで実現するAIエージェント駆動のNext.jsアプリデバッグ手法
nyatinte
7
900
なぜ今、Terraformの本を書いたのか? - 著者陣に聞く!『Terraformではじめる実践IaC』登壇資料
fufuhu
4
660
KessokuでDIでもgoroutineを活用する / Go Connect #6
mazrean
0
120
画像コンペでのベースラインモデルの育て方
tattaka
3
1.9k
CSC305 Summer Lecture 12
javiergs
PRO
0
130
サーバーサイドのビルド時間87倍高速化
plaidtech
PRO
0
510
CSC305 Summer Lecture 06
javiergs
PRO
0
100
TDD 実践ミニトーク
contour_gara
0
150
AI OCR API on Lambdaを Datadogで可視化してみた
nealle
0
180
Featured
See All Featured
StorybookのUI Testing Handbookを読んだ
zakiyama
30
6k
KATA
mclloyd
32
14k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Rails Girls Zürich Keynote
gr2m
95
14k
4 Signs Your Business is Dying
shpigford
184
22k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
358
30k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
50
5.5k
How GitHub (no longer) Works
holman
315
140k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
A better future with KSS
kneath
239
17k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
Code Review Best Practice
trishagee
70
19k
Transcript
Hi.
NumPy PyPy NumPyPy Fortran
A tale of two Pythons
First, there was CPython. And it was OK.
And then there was PyPy. And it was pretty good.
And scientists thought it was pretty good. But there was
also NumPy
And they thought it was swell. So the developers crafted
NumPyPy.
Wat? But there was also Fortran.
More than programmers. Scientists like Fortran.
And that brings us to this semester.
ctypes
MORE FORTRAN
None
>>> import numpypy >>> class X(numpypy.ndarray): ... pass ... >>>
numpypy.ndarray(10) array([ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) >>> X(10) array([ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) >>> type(X(10)) <type 'numpypy.ndarray'>
הבר הדות Danke schön Muchas Gracias Questions? Thank you!