Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データヴィジュアライゼーション入門
Search
Hiroshechka Y
January 07, 2023
Design
0
140
データヴィジュアライゼーション入門
データビジュアライゼーション・データ可視化に関する講演の資料です。
Hiroshechka Y
January 07, 2023
Tweet
Share
More Decks by Hiroshechka Y
See All by Hiroshechka Y
Towards a More Efficient Reasoning LLM: AIMO2 Solution Summary and Introduction to Fast-Math Models
analokmaus
2
230
How to start your career in Data Science with Kaggle
analokmaus
0
110
Other Decks in Design
See All in Design
harutaka Vision Deck
zenkigenforrecruit
0
140
Storyboard Honey
rocioparronrubio
0
280
Building foundations 堅牢なデザイントークンの設計
hilokifigma
2
3.5k
【Adobe MAX Japan 2025】上手にFireflyにお願いしてウェブデザイン案を出すぞ!
cremacrema
7
5.7k
誰もがAIエージェントを"操作"したがる〜AIエージェントに求められるUX〜
ikeyatsu
2
1.8k
オープンデータを利用して色々なものを作った話
hjmkth
1
110
Starry | Storyboards | Scene 1-21
giofortuna_story
0
380
ブランドパーソナリティ言語化における生成AI活用の実際
h0sa
0
160
【PoCで終わらない】運用フェーズまで見据えたAI駆動UIデザイン/フロントエンド開発実践
kitami
1
200
読書シェア会 vol.5 / Yumemi.grow 20250526
rakus_dev
0
1.6k
Echoes Boomerang
artcloudyu
PRO
0
240
BPStudy#213〜ビジネスアナリシスとDDD(ドメイン駆動設計)パネルディスカッション資料 / BPStudy213-panel
haru860
0
420
Featured
See All Featured
Java REST API Framework Comparison - PWX 2021
mraible
31
8.7k
Building Applications with DynamoDB
mza
95
6.5k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
26k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
20
1.3k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.4k
The World Runs on Bad Software
bkeepers
PRO
69
11k
Balancing Empowerment & Direction
lara
1
400
Fireside Chat
paigeccino
37
3.5k
Music & Morning Musume
bryan
46
6.6k
Six Lessons from altMBA
skipperchong
28
3.9k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
5
250
Transcript
σʔλ ϏδϡΞϥΠθʔγϣϯ ೖ フリーランスデザイナー・DS アイリス株式会社 AIエンジニア・DS 東京⼤学⼤学院薬学系研究科医薬政策学修⼠2年 吉原浩之
σʔλϏδϡΞϥΠθʔγϣϯ ͱʁ 3
データ / Data = ⽴論・計算の基礎となる、 既知のあるいは認容された事実・数値。 ビジュアライゼーション / Visualization =
⼈の⽬には⾒えない事物や現象を、 映像やグラフ・表などにして分かりやすくすること。 可視化。視覚化。⾒える化。 4
• 可視化されたデータはコミュニケーション のツール であり、相⼿の判断と⾏動を促すこと・変えること ができる。 • 相⼿が持っているコンテキストを考慮し、相⼿に下 して欲しい判断やして欲しい⾏動を促進するために 最も適した可視化の⼿法を考える。 5
ྺ࢙͔ΒՄࢹԽΛՄࢹԽ͢Δ 6
Ptolemy's world map, ~150 7
データ 情報 視覚的表現 理論 アイデア 解析幾何学(デカルト) 確率論(パスカル) ⼈⼝統計学(グラント) etc 棒グラフ
ヒストグラム etc 8
The Commercial and Political Atlas, 1786 9
上: ナポレオンの⾏軍 下: 鶏のとさか図 10
科学的可視化 Scientific Visualization • 低次元構造を持つデータが 対象 • データ本来の構造をわかり やすく⾒せることが⽬的 •
主に物理空間 How to visualize? 11
情報可視化 Information Visualization • 抽象、多次元データ • 構造を与えることも必要 • e.g.) ツリー、ネットワーク
• 主に論理空間 How and What to visualize? 12 https://blog.linkedin.com/2011/01/24/linkedin-inmaps
ݱͷՄࢹԽ 13
BIG DATA 視覚的表現 情報 意思決定・アクション 14
データの「⺠主化」 15 https://vdata.nikkei.com/newsgraphics/cabinet-approval-rating/
ՄࢹԽͷςΫχοΫ 16
17 $IPPTFUIFSJHIUDIBSU 'PMMPXCBTJDDIBSUGPSNBUUJOHSVMFT .BLFZPVSDIBSUTJOUVJUJWF $POUFYUJTFWFSZUIJOH
%FTJHOXJUIQVSQPTF .BLFUIFDPNQMFYTJNQMF %PO`UVTFUPPNVDIOPOEBUBJOL .BLFJUCFBVUJGVM
1. ⽬的がある 2. 不必要な視覚情報がない 3. 適切な視覚属性(視覚変数)を使⽤する ⽬的達成のためのデータから視覚属性への必要⼗分なマッピング X (obj) 時間
座標 速度 ⾊ 位置 ⻑さ 18
www.data-to-viz.com 19
σʔλΠϯΫൺ 20
l5IFJOUFSJPSEFDPSBUJPOPGHSBQIJDTHFOFSBUFTB MPUPGJOLUIBUEPFTOPUUFMMUIFWJFXFSBOZUIJOH OFX5IFQVSQPTFPGEFDPSBUJPOWBSJFTUPNBLF UIFHSBQIJDBQQFBSNPSFTDJFOUJpDBOEQSFDJTF UP FOMJWFOUIFEJTQMBZ UPHJWFUIFEFTJHOFSBO PQQPSUVOJUZUPFYFSDJTFBSUJTUJDTLJMMT3FHBSEMFTTPG JUTDBVTF JUJTBMMOPOEBUBJOLPSSFEVOEBOUEBUB
JOL BOEJUJTPGUFODIBSUKVOLl 5VGUF &EXBSE3 21
Data − Ink Ratio = ink used to encode data
total ink used Tufte, Edward R. (1983, 2001). The Visual Display of Quantitative Information 2nd edition Cheshire, CT. Graphics Press. データをエンコードする 場合による データをエンコードしない • 点(散布図) • バー(ヒストグラム) • ノードとエッジ(グラフ) • その他データを表すもの • 軸の数字 • 軸そのもの • 補助線 • キャプション • バーの模様 • 3DグラフのZ軸成分 22
Tufteによる 極限まで装飾を削ぎ落とした箱髭図 最⼩値、最⼤値、中央値、25%点、75%点 の情報は全て保たれている。が、読みにくい。 23
ࢹ֮ଐੑ 24
位置 ⻑さ ⾓度 幅 ⾯積 彩度 ⾊相 形 25
• 視覚属性には「強弱」がある。 位置 >⻑⸺さ> >幅>⾯積>彩度≒⾊相>形 • 「強弱」は僅かな違いに対する分解能で、重要な データ属性に強い視覚属性を割り当てる。 (Jock Mackinlay, 1986)
• 頻繁に使われるヒストグラムは「⻑さ」、折れ線グラフ は「位置」と「⾓度」を主な視覚属性としている。 ⾓度 26
ήγϡλϧτͷ๏ଇ 27
1. 近接の法則 / Law of Proximity 2. 類同の法則 / Law
of Similarity 28
3. 連続の法則 / Law of Continuity 4. 閉合の法則 / Law
of Closure 29
5. 共通運命の法則 / Law of Common Fate 6. ⾯積の法則 /
Law of Area 30
7. 対称の法則 / Law of Symmetry 31
࣮ྫ 32
33 1. FBページのクリック数 https://www.economist.com/britain/2016/08/13/the-metamorphosis
34 2. ⽝の体重と⾸の太さ https://www.economist.com/britain/2016/08/13/subwoofers
35 3. 世論調査 https://medium.economist.com/mistakes-weve-drawn-a-few-8cdd8a42d368
36 4. 貿易⾚字と失業者 https://www.economist.com/briefing/2017/01/21/peter-navarro-is-about-to-become-one-of-the-worlds-most-powerful-economists
37 5. 年⾦と⾼齢者 https://www.economist.com/the-americas/2017/02/25/reducing-brazils-pension-burden
38 6. 過度な余剰 https://www.economist.com/finance-and-economics/2016/09/03/more-spend-less-thrift
"119 ͦͷଞ 41
42 間隔・⽐例尺度 順序尺度 名義尺度 位置 O O O ⻑さ O
O ⾓度 O 幅 O O ⾯積 O O 彩度 O O ⾊相 O 形 O