Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Scaling Django with Distributed Systems
Search
Andrew Godwin
April 07, 2017
Programming
3
2.2k
Scaling Django with Distributed Systems
A talk I gave at PyCon Ukraine 2017.
Andrew Godwin
April 07, 2017
Tweet
Share
More Decks by Andrew Godwin
See All by Andrew Godwin
Reconciling Everything
andrewgodwin
1
330
Django Through The Years
andrewgodwin
0
220
Writing Maintainable Software At Scale
andrewgodwin
0
450
A Newcomer's Guide To Airflow's Architecture
andrewgodwin
0
370
Async, Python, and the Future
andrewgodwin
2
680
How To Break Django: With Async
andrewgodwin
1
740
Taking Django's ORM Async
andrewgodwin
0
740
The Long Road To Asynchrony
andrewgodwin
0
680
The Scientist & The Engineer
andrewgodwin
1
780
Other Decks in Programming
See All in Programming
育てるアーキテクチャ:戦い抜くPythonマイクロサービスの設計と進化戦略
fujidomoe
1
160
そのpreloadは必要?見過ごされたpreloadが技術的負債として爆発した日
mugitti9
2
3.1k
Things You Thought You Didn’t Need To Care About That Have a Big Impact On Your Job
hollycummins
0
200
Model Pollution
hschwentner
1
190
overlayPreferenceValue で実現する ピュア SwiftUI な AdMob ネイティブ広告
uhucream
0
170
iOSエンジニア向けの英語学習アプリを作る!
yukawashouhei
0
190
CSC509 Lecture 02
javiergs
PRO
0
410
CSC305 Lecture 04
javiergs
PRO
0
260
株式会社 Sun terras カンパニーデック
sunterras
0
250
あなたの知らない「動画広告」の世界 - iOSDC Japan 2025
ukitaka
0
440
2分台で1500examples完走!爆速CIを支える環境構築術 - Kaigi on Rails 2025
falcon8823
3
3.4k
私はどうやって技術力を上げたのか
yusukebe
43
18k
Featured
See All Featured
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
54
3k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Docker and Python
trallard
46
3.6k
Faster Mobile Websites
deanohume
310
31k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Visualization
eitanlees
148
16k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
358
30k
Context Engineering - Making Every Token Count
addyosmani
5
200
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.6k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
970
The Power of CSS Pseudo Elements
geoffreycrofte
79
6k
Transcript
None
Andrew Godwin Hi, I'm Django core developer Senior Software Engineer
at Used to complain about migrations a lot
Distributed Systems
c = 299,792,458 m/s
Early CPUs c = 60m propagation distance Clock ~2cm 5
MHz
Modern CPUs c = 10cm propagation distance 3 GHz
Distributed systems are made of independent components
They are slower and harder to write than synchronous systems
But they can be scaled up much, much further
Trade-offs
There is never a perfect solution.
Fast Good Cheap
None
Load Balancer WSGI Worker WSGI Worker WSGI Worker
Load Balancer WSGI Worker WSGI Worker WSGI Worker Cache
Load Balancer WSGI Worker WSGI Worker WSGI Worker Cache Cache
Cache
Load Balancer WSGI Worker WSGI Worker WSGI Worker Database
CAP Theorem
Partition Tolerant Consistent Available
PostgreSQL: CP Consistent everywhere Handles network latency/drops Can't write if
main server is down
Cassandra: AP Can read/write to any node Handles network latency/drops
Data can be inconsistent
It's hard to design a product that might be inconsistent
But if you take the tradeoff, scaling is easy
Otherwise, you must find other solutions
Read Replicas (often called master/slave) Load Balancer WSGI Worker WSGI
Worker WSGI Worker Replica Replica Main
Replicas scale reads forever... But writes must go to one
place
If a request writes to a table it must be
pinned there, so later reads do not get old data
When your write load is too high, you must then
shard
Vertical Sharding Users Tickets Events Payments
Horizontal Sharding Users 0 - 2 Users 3 - 5
Users 6 - 8 Users 9 - A
Both Users 0 - 2 Users 3 - 5 Users
6 - 8 Users 9 - A Events 0 - 2 Events 3 - 5 Events 6 - 8 Events 9 - A Tickets 0 - 2 Tickets 3 - 5 Tickets 6 - 8 Tickets 9 - A
Both plus caching Users 0 - 2 Users 3 -
5 Users 6 - 8 Users 9 - A Events 0 - 2 Events 3 - 5 Events 6 - 8 Events 9 - A Tickets 0 - 2 Tickets 3 - 5 Tickets 6 - 8 Tickets 9 - A User Cache Event Cache Ticket Cache
Teams have to scale too; nobody should have to understand
eveything in a big system.
Services allow complexity to be reduced - for a tradeoff
of speed
Users 0 - 2 Users 3 - 5 Users 6
- 8 Users 9 - A Events 0 - 2 Events 3 - 5 Events 6 - 8 Events 9 - A Tickets 0 - 2 Tickets 3 - 5 Tickets 6 - 8 Tickets 9 - A User Cache Event Cache Ticket Cache User Service Event Service Ticket Service
User Service Event Service Ticket Service WSGI Server
Each service is its own, smaller project, managed and scaled
separately.
But how do you communicate between them?
Service 2 Service 3 Service 1 Direct Communication
Service 2 Service 3 Service 1 Service 4 Service 5
Service 2 Service 3 Service 1 Service 4 Service 5
Service 6 Service 7 Service 8
Service 2 Service 3 Service 1 Message Bus Service 2
Service 3 Service 1
A single point of failure is not always bad -
if the alternative is multiple, fragile ones
Channels and ASGI provide a standard message bus built with
certain tradeoffs
Backing Store e.g. Redis, RabbitMQ ASGI (Channel Layer) Channels Library
Django Django Channels Project
Backing Store e.g. Redis, RabbitMQ ASGI (Channel Layer) Pure Python
Failure Mode At most once Messages either do not arrive,
or arrive once. At least once Messages arrive once, or arrive multiple times
Guarantees vs. Latency Low latency Messages arrive very quickly but
go missing more Low loss rate Messages are almost never lost but arrive slower
Queuing Type First In First Out Consistent performance for all
users First In Last Out Hides backlogs but makes them worse
Queue Sizing Finite Queues Sending can fail Infinite queues Makes
problems even worse
You must understand what you are making (This is surprisingly
uncommon)
Design as much as possible around shared-nothing
Per-machine caches On-demand thumbnailing Signed cookie sessions
Has to be shared? Try to split it
Has to be shared? Try sharding it.
Django's job is to be slowly replaced by your code
Just make sure you match the API contract of what
you're replacing!
Don't try to scale too early; you'll pick the wrong
tradeoffs.
Thanks. Andrew Godwin @andrewgodwin channels.readthedocs.io