As the complexity of modern hardware systems explodes, fast and effective design space explorations for better integrated circuit (IC) implementations is becoming more and more difficult to achieve due to higher demands of computational resources. Recent years have seen increasing use of decision intelligence in IC design flows to navigate the design solution space in a more systematic and intelligent manner. To address these problems, we have been working on AI/ML-infused IC design orchestration in order 1) to enable the IC design environment on hybrid cloud platform so that we can easily scale up/down the workloads according to the computation demands; and 2) to produce higher quality of results (QoRs) in shorter total turnaround time (TAT). In this work, we will illustrate how we provide a scalable IC design workload execution that produces higher performance designs by utilizing AI/ML-driven automatic parameter tuning capability. We first demonstrate that we can build a cloud-based IC design environment including containerized digital design flow on Kubernetes clusters. Then, we extend the containerized design flow with the automatic parameter tuning capability using AI/ML techniques. Finally, we demonstrate that the automatic parameter tuning can be executed in a more scalable and distributable manner using the Ray platform. We will use the actual design environment setups, the code snippets, and results from the product IC designs as evidence that the proposed method can produce a higher quality of IC designs using the Ray-based automatic parameter tuning methodologies.
Speakers: Gi-Joon Nam & Jinwook Jung