Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
簡潔データ構造輪講資料(順列)
Search
Sho Iizuka
June 19, 2017
Science
1
8k
簡潔データ構造輪講資料(順列)
Compact Data Structures: A Practical Approach の Chapter 5: Permutations の輪講資料です。
Sho Iizuka
June 19, 2017
Tweet
Share
More Decks by Sho Iizuka
See All by Sho Iizuka
半年前の自分に教えたい systemd のハマりどころ
arosh
19
16k
Osaka.Stan#5 LT プログラミングコンテストのデータを分析した話
arosh
1
6.8k
Pythonにおける日本語処理
arosh
1
2.1k
FM-index による全文検索
arosh
0
33
円と円の外接線の求め方
arosh
0
56
円と円の交点の求め方
arosh
0
42
Other Decks in Science
See All in Science
MoveItを使った産業用ロボット向け動作作成方法の紹介 / Introduction to creating motion for industrial robots using MoveIt
ry0_ka
0
480
白金鉱業Meetup Vol.16_数理最適化案件のはじめかた・すすめかた
brainpadpr
3
1.8k
07_浮世満理子_アイディア高等学院学院長_一般社団法人全国心理業連合会代表理事_紹介資料.pdf
sip3ristex
0
470
高校生就活へのDA導入の提案
shunyanoda
0
180
メール送信サーバの集約における透過型SMTP プロキシの定量評価 / Quantitative Evaluation of Transparent SMTP Proxy in Email Sending Server Aggregation
linyows
0
920
眼科AIコンテスト2024_特別賞_6位Solution
pon0matsu
0
400
データベース09: 実体関連モデル上の一貫性制約
trycycle
PRO
0
680
FRAM - 複雑な社会技術システムの理解と分析
__ymgc__
1
190
ウェブ・ソーシャルメディア論文読み会 第25回: Differences in misinformation sharing can lead to politically asymmetric sanctions (Nature, 2024)
hkefka385
0
110
KH Coderチュートリアル(スライド版)
koichih
1
40k
IWASAKI Hideo
genomethica
0
100
生成AIと学ぶPythonデータ分析再入門-Pythonによるクラスタリング・可視化をサクサク実施-
datascientistsociety
PRO
4
1.6k
Featured
See All Featured
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.8k
Building Adaptive Systems
keathley
43
2.6k
Writing Fast Ruby
sferik
628
61k
Adopting Sorbet at Scale
ufuk
77
9.4k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
45
7.3k
Designing for humans not robots
tammielis
253
25k
Gamification - CAS2011
davidbonilla
81
5.3k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
52
2.8k
Optimizing for Happiness
mojombo
379
70k
The Language of Interfaces
destraynor
158
25k
Speed Design
sergeychernyshev
31
990
Transcript
Chapter 5: Permutations Compact Data Structures: A Practical Approach (Gonzalo
Navarro) 発表者:飯塚 1
発表の流れ 2 1. 順列 [1, ] の最悪エントロピーの評価 ➡ 順列の保存は log
bits でほとんど最適 2. Inverse *+() を実現する簡潔順列 ➡ 1 + log + () bits の空間計算量で 1/ の時間計算量を実現 ( > 0) 3. Power 5() を実現する簡潔順列 ➡ 任意の について *+() と同様の時間・空間計算量 内部的には *+() の簡潔順列を利⽤して実現される
順列 [1, ] の最悪エントロピーの評価 3 • 順列 [1, ]:1, 2,
…, n を並べ替えた配列 • ⼤きさ の順列は ! 種あるので ℋ9: = log = log ! a. ≥ 1 のとき ! ≤ ? より ℋ9: ≤ log ? = log b. log ! = log ∏ ? 5A+ = ∑ log ? 5A+ Jensen の不等式 ∑ 5 ? 5A+ ≤ + ? ∑ 5 ? 5A+ が使える E log ? 5A+ ≤ log 1 E ? 5A+ = log 1 ⋅ 1 2 + 1 = (log + 1 − 1) = log + 1 − Θ() c. Stirling の近似を使うと log ! = log − Θ() 各要素 log bits の配列 (Section 3.1) に保存するだけで ほとんど最適 ➡ 有⽤な機能という付加価値を付ける
実現したい有⽤な機能 4 • *+ : = となる を⾒つける • 5():
… … のように を 回適⽤したとき の遷移先を求める • 1 + log + () bits のスペースで 1/ の時間計算量を実現 ( > 0) • log + log ではないから succinct ではない? ➡ = 1/ log とすれば log + bits のスペースで log の時間計算量
5.1 Inverse Permutations 5 【⽬的】*+ : = となる を⾒つける a.
あらかじめ *+ を持っておくと時間計算量 1 ➡ 補助領域が log bits … log が達成できない b. + = () ,O = + , … を繰り返して = となる を⾒つけたらストップ ➡ 時間計算量が () … は⼤きい b. をベースに⾼速化するためのアイデア 1. cycle decomposition 2. shortcut
cycle decomposition 6 1 2 3 4 5 6 7
8 9 10 11 12 () 10 7 3 5 8 1 11 12 4 6 9 2 5 8 12 2 7 9 4 11 10 6 1 3
shortcut 7 5 8 12 2 7 9 4 11
Inverse *+ の計算 1. 基本的には順列の⽅向に進む 2. 逆向きのショートカットがあったら1度だけ使う 3. = となる を⾒つけたらストップ 時間計算量 : パラメータ 以上の間隔が空かないように 逆向きのショートカットを⽤意
shortcut の格納 8 5 8 12 2 7 9 4
11 1 2 3 4 5 6 7 8 9 10 11 12 () 10 7 3 5 8 1 11 12 4 6 9 2 0 1 0 0 0 0 0 1 1 0 0 0 8 9 2 :ショートカットの有無 :ショートカット先 は左詰めにして の rank で アクセスする
空間計算量と時間計算量 9 • , 元の順列: log bits • , shortcut
の有無: n bits の bit vector。constant time の rank が必要。4.2.2 の⽅法で + bits • , shortcut 先:サイクルの⻑さを としたとき 個々のサイクルは / 個のショートカットを持つから の要素数は O? WX+ を超えない(←サイクル⻑が + 1 の場合) よって O WX+ log bits • = O WX+ とおくと 1 + log + + () bits • = 1/ log とすれば log + bits のスペースで = 1/ = log の時間計算量
5.2 Powers of Permutations 10 サイクル順に要素を並べた配列を作ると Power は簡単に計算できる + …
[5, 8, 12, 2, 7, 11, 9, 4] O … [10, 6, 1] Z … [3] 5 8 12 2 7 9 4 11 10 6 1 3
Power の計算例 11 • + … [5, 8, 12, 2,
7, 11, 9, 4] • O … [10, 6, 1] • Z … [3] O[(12) を計算したい 1. 12 は + の 3 番⽬の要素である 2. + 3 − 1 + 20 mod + + 1 = + 22 mod 8 + 1 = 9 *+(10) を計算したい 1. 10 は O の 1 番⽬の要素である 2. O 1 − 1 − 1 mod O + 1 = O −1 mod 3 + 1 = 1 *+ のデータ構造は不要だった? ➡ 5 の実装に必要
格納⽅法 (1) 12 + … [5, 8, 12, 2, 7,
11, 9, 4] O … [10, 6, 1] Z … [3] • :+ , O , … を並べた配列。 log bits • :+ , O , … の終端の位置が 1 になる bit vector。 pred と succ (Section 4.5.2) を使ってサイクル⻑を 求める ※ 元の順列 の格納はもはや不要 1 2 3 4 5 6 7 8 9 10 11 12 5 8 12 2 7 11 9 4 10 6 1 3 0 0 0 0 0 0 0 1 0 0 1 1
格納⽅法 (2) 13 • これだけでは「 上での の出現位置」を答えるのに かかってしまう • そこでポインタ
を⽤意して 1 で計算可能にする 5 8 12 2 7 11 9 4 10 6 1 3 0 0 0 0 0 0 0 1 0 0 1 1 1 2 3 4 5 6 7 8 9 10 11 12
格納⽅法 (3) 14 • に ⌈log ⌉ bits, に ⌈log
⌉ bits, に + () 必要 • これでは 2 log + () bits 必要で簡潔にならない • 実は は不要 5 8 12 2 7 11 9 4 10 6 1 3 0 0 0 0 0 0 0 1 0 0 1 1 1 2 3 4 5 6 7 8 9 10 11 12
格納⽅法 (4) 15 • に Section 5.1 の⼿法を適⽤して *+ を計算可能にする
• の 番⽬の要素は *+() で計算可能 • よって に 1 + log + + () bits, に + () bits • = 1/ log のとき全体で log + bits 5 8 12 2 7 11 9 4 10 6 1 3 0 0 0 0 0 0 0 1 0 0 1 1 1 2 3 4 5 6 7 8 9 10 11 12
計算例 16 O[(12) を計算したい 1. 12の 上での位置は 12 = 3
2. , 3 = 0, , 3 = 8 よりサイクル⻑は 8 3. 3 − 1 + 20 mod 8 + 1 = 7, *+ 7 = 9 5 8 12 2 7 11 9 4 10 6 1 3 0 0 0 0 0 0 0 1 0 0 1 1 1 2 3 4 5 6 7 8 9 10 11 12