Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
簡潔データ構造輪講資料(順列)
Search
Sho Iizuka
June 19, 2017
Science
1
8.3k
簡潔データ構造輪講資料(順列)
Compact Data Structures: A Practical Approach の Chapter 5: Permutations の輪講資料です。
Sho Iizuka
June 19, 2017
Tweet
Share
More Decks by Sho Iizuka
See All by Sho Iizuka
半年前の自分に教えたい systemd のハマりどころ
arosh
19
17k
Osaka.Stan#5 LT プログラミングコンテストのデータを分析した話
arosh
1
7.1k
Pythonにおける日本語処理
arosh
1
2.1k
FM-index による全文検索
arosh
0
36
円と円の外接線の求め方
arosh
0
69
円と円の交点の求め方
arosh
0
42
Other Decks in Science
See All in Science
論文紹介 音源分離:SCNET SPARSE COMPRESSION NETWORK FOR MUSIC SOURCE SEPARATION
kenmatsu4
0
330
06_浅井雄一郎_株式会社浅井農園代表取締役社長_紹介資料.pdf
sip3ristex
0
650
データマイニング - グラフデータと経路
trycycle
PRO
1
220
データベース03: 関係データモデル
trycycle
PRO
1
270
データから見る勝敗の法則 / The principle of victory discovered by science (open lecture in NSSU)
konakalab
1
170
テンソル分解による糖尿病の組織特異的遺伝子発現の統合解析を用いた関連疾患の予測
tagtag
2
260
mOrganic™ Holdings, LLC.
hyperlocalnetwork
0
110
Transport information Geometry: Current and Future II
lwc2017
0
210
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
170
会社でMLモデルを作るとは @電気通信大学 データアントレプレナーフェロープログラム
yuto16
1
240
凸最適化からDC最適化まで
santana_hammer
1
300
Lean4による汎化誤差評価の形式化
milano0017
1
330
Featured
See All Featured
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.1k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
54
3k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.2k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Optimizing for Happiness
mojombo
379
70k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.5k
Music & Morning Musume
bryan
46
6.8k
Transcript
Chapter 5: Permutations Compact Data Structures: A Practical Approach (Gonzalo
Navarro) 発表者:飯塚 1
発表の流れ 2 1. 順列 [1, ] の最悪エントロピーの評価 ➡ 順列の保存は log
bits でほとんど最適 2. Inverse *+() を実現する簡潔順列 ➡ 1 + log + () bits の空間計算量で 1/ の時間計算量を実現 ( > 0) 3. Power 5() を実現する簡潔順列 ➡ 任意の について *+() と同様の時間・空間計算量 内部的には *+() の簡潔順列を利⽤して実現される
順列 [1, ] の最悪エントロピーの評価 3 • 順列 [1, ]:1, 2,
…, n を並べ替えた配列 • ⼤きさ の順列は ! 種あるので ℋ9: = log = log ! a. ≥ 1 のとき ! ≤ ? より ℋ9: ≤ log ? = log b. log ! = log ∏ ? 5A+ = ∑ log ? 5A+ Jensen の不等式 ∑ 5 ? 5A+ ≤ + ? ∑ 5 ? 5A+ が使える E log ? 5A+ ≤ log 1 E ? 5A+ = log 1 ⋅ 1 2 + 1 = (log + 1 − 1) = log + 1 − Θ() c. Stirling の近似を使うと log ! = log − Θ() 各要素 log bits の配列 (Section 3.1) に保存するだけで ほとんど最適 ➡ 有⽤な機能という付加価値を付ける
実現したい有⽤な機能 4 • *+ : = となる を⾒つける • 5():
… … のように を 回適⽤したとき の遷移先を求める • 1 + log + () bits のスペースで 1/ の時間計算量を実現 ( > 0) • log + log ではないから succinct ではない? ➡ = 1/ log とすれば log + bits のスペースで log の時間計算量
5.1 Inverse Permutations 5 【⽬的】*+ : = となる を⾒つける a.
あらかじめ *+ を持っておくと時間計算量 1 ➡ 補助領域が log bits … log が達成できない b. + = () ,O = + , … を繰り返して = となる を⾒つけたらストップ ➡ 時間計算量が () … は⼤きい b. をベースに⾼速化するためのアイデア 1. cycle decomposition 2. shortcut
cycle decomposition 6 1 2 3 4 5 6 7
8 9 10 11 12 () 10 7 3 5 8 1 11 12 4 6 9 2 5 8 12 2 7 9 4 11 10 6 1 3
shortcut 7 5 8 12 2 7 9 4 11
Inverse *+ の計算 1. 基本的には順列の⽅向に進む 2. 逆向きのショートカットがあったら1度だけ使う 3. = となる を⾒つけたらストップ 時間計算量 : パラメータ 以上の間隔が空かないように 逆向きのショートカットを⽤意
shortcut の格納 8 5 8 12 2 7 9 4
11 1 2 3 4 5 6 7 8 9 10 11 12 () 10 7 3 5 8 1 11 12 4 6 9 2 0 1 0 0 0 0 0 1 1 0 0 0 8 9 2 :ショートカットの有無 :ショートカット先 は左詰めにして の rank で アクセスする
空間計算量と時間計算量 9 • , 元の順列: log bits • , shortcut
の有無: n bits の bit vector。constant time の rank が必要。4.2.2 の⽅法で + bits • , shortcut 先:サイクルの⻑さを としたとき 個々のサイクルは / 個のショートカットを持つから の要素数は O? WX+ を超えない(←サイクル⻑が + 1 の場合) よって O WX+ log bits • = O WX+ とおくと 1 + log + + () bits • = 1/ log とすれば log + bits のスペースで = 1/ = log の時間計算量
5.2 Powers of Permutations 10 サイクル順に要素を並べた配列を作ると Power は簡単に計算できる + …
[5, 8, 12, 2, 7, 11, 9, 4] O … [10, 6, 1] Z … [3] 5 8 12 2 7 9 4 11 10 6 1 3
Power の計算例 11 • + … [5, 8, 12, 2,
7, 11, 9, 4] • O … [10, 6, 1] • Z … [3] O[(12) を計算したい 1. 12 は + の 3 番⽬の要素である 2. + 3 − 1 + 20 mod + + 1 = + 22 mod 8 + 1 = 9 *+(10) を計算したい 1. 10 は O の 1 番⽬の要素である 2. O 1 − 1 − 1 mod O + 1 = O −1 mod 3 + 1 = 1 *+ のデータ構造は不要だった? ➡ 5 の実装に必要
格納⽅法 (1) 12 + … [5, 8, 12, 2, 7,
11, 9, 4] O … [10, 6, 1] Z … [3] • :+ , O , … を並べた配列。 log bits • :+ , O , … の終端の位置が 1 になる bit vector。 pred と succ (Section 4.5.2) を使ってサイクル⻑を 求める ※ 元の順列 の格納はもはや不要 1 2 3 4 5 6 7 8 9 10 11 12 5 8 12 2 7 11 9 4 10 6 1 3 0 0 0 0 0 0 0 1 0 0 1 1
格納⽅法 (2) 13 • これだけでは「 上での の出現位置」を答えるのに かかってしまう • そこでポインタ
を⽤意して 1 で計算可能にする 5 8 12 2 7 11 9 4 10 6 1 3 0 0 0 0 0 0 0 1 0 0 1 1 1 2 3 4 5 6 7 8 9 10 11 12
格納⽅法 (3) 14 • に ⌈log ⌉ bits, に ⌈log
⌉ bits, に + () 必要 • これでは 2 log + () bits 必要で簡潔にならない • 実は は不要 5 8 12 2 7 11 9 4 10 6 1 3 0 0 0 0 0 0 0 1 0 0 1 1 1 2 3 4 5 6 7 8 9 10 11 12
格納⽅法 (4) 15 • に Section 5.1 の⼿法を適⽤して *+ を計算可能にする
• の 番⽬の要素は *+() で計算可能 • よって に 1 + log + + () bits, に + () bits • = 1/ log のとき全体で log + bits 5 8 12 2 7 11 9 4 10 6 1 3 0 0 0 0 0 0 0 1 0 0 1 1 1 2 3 4 5 6 7 8 9 10 11 12
計算例 16 O[(12) を計算したい 1. 12の 上での位置は 12 = 3
2. , 3 = 0, , 3 = 8 よりサイクル⻑は 8 3. 3 − 1 + 20 mod 8 + 1 = 7, *+ 7 = 9 5 8 12 2 7 11 9 4 10 6 1 3 0 0 0 0 0 0 0 1 0 0 1 1 1 2 3 4 5 6 7 8 9 10 11 12