Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Kubeflow Pipelines v2 で変わる機械学習パイプライン開発
Search
Asei Sugiyama
March 20, 2024
Technology
7
1.5k
Kubeflow Pipelines v2 で変わる機械学習パイプライン開発
第39回 MLOps 勉強会の発表資料です
https://mlops.connpass.com/event/312260/
Asei Sugiyama
March 20, 2024
Tweet
Share
More Decks by Asei Sugiyama
See All by Asei Sugiyama
MLOps の現場から
asei
8
770
LLMOps: Eval-Centric を前提としたMLOps
asei
7
550
The Rise of LLMOps
asei
13
2.8k
生成AIの活用パターンと継続的評価
asei
15
2.4k
最近の Citadel AI の取り組みのご紹介 (Nov, 2024)
asei
2
95
仕事で取り組む 生成 AI 時代の対話の品質評価
asei
2
70
MLOps の処方箋ができるまで
asei
3
590
LLM を現場で評価する
asei
5
970
生成 AI の評価方法
asei
8
2.3k
Other Decks in Technology
See All in Technology
Kotlin Multiplatformのポテンシャル
recruitengineers
PRO
2
150
いま現場PMのあなたが、 経営と向き合うPMになるために 必要なこと、腹をくくること
hiro93n
9
7.7k
EMConf JP の楽しみ方 / How to enjoy EMConf JP
pauli
2
150
Accessibility Inspectorを活用した アプリのアクセシビリティ向上方法
hinakko
0
180
デジタルアイデンティティ技術 認可・ID連携・認証 応用 / 20250114-OIDF-J-EduWG-TechSWG
oidfj
2
690
0→1事業こそPMは営業すべし / pmconf #落選お披露目 / PM should do sales in zero to one
roki_n_
PRO
1
1.5k
実践! ソフトウェアエンジニアリングの価値の計測 ── Effort、Output、Outcome、Impact
nomuson
0
2.1k
Oracle Exadata Database Service(Dedicated Infrastructure):サービス概要のご紹介
oracle4engineer
PRO
0
12k
.NET AspireでAzure Functionsやクラウドリソースを統合する
tsubakimoto_s
0
190
今から、 今だからこそ始める Terraform で Azure 管理 / Managing Azure with Terraform: The Perfect Time to Start
nnstt1
0
240
Visual StudioとかIDE関連小ネタ話
kosmosebi
1
380
comilioとCloudflare、そして未来へと向けて
oliver_diary
6
450
Featured
See All Featured
Designing Experiences People Love
moore
139
23k
The Language of Interfaces
destraynor
155
24k
Large-scale JavaScript Application Architecture
addyosmani
510
110k
The Cost Of JavaScript in 2023
addyosmani
46
7.2k
Rails Girls Zürich Keynote
gr2m
94
13k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
49k
Faster Mobile Websites
deanohume
305
30k
[RailsConf 2023] Rails as a piece of cake
palkan
53
5.1k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
113
50k
Bash Introduction
62gerente
610
210k
Into the Great Unknown - MozCon
thekraken
34
1.6k
Side Projects
sachag
452
42k
Transcript
Kubeflow Pipelines v2 で変わる 機械学習パイプライン開発 Asei Sugiyama
自己紹介 杉山 阿聖 (@K_Ryuichirou) Software Engineer @ Citadel AI Google
Cloud Innovators Champion @ Cloud AI/ML MLSE 機械学習オペレーション WG 機械学習図鑑 共著 決闘者 @ マスターデュエル
主旨 KFP SDK v2 がリリースされて推奨されるパイプラインの書き方がだい ぶ変わりました KFP SDK v1 の書き方をしたパイプラインもしばらく使えますが、
Vertex Pipelines では2024年12月に EOF を迎えます Fun-in といった新しい機能も使えるようになったので、リリースを確認 し、マイグレーションを計画するとよいでしょう
TOC Basics of Kubeflow Pipelines <- Migration from v1 to
v2
Basics of Kubeflow Pipelines Vertex AI と TFX Vertex Pipelines
3 つの書き方 Lightweight Python Component Hello, world コンポーネントのつなげかた 複雑なパイプライン
TFX, Kubeflow, Vertex AI 設計思想は同一 TFX は Google の機械学習基盤 Kubeflow
は TFX の OSS 版 TFX をクラウドサービスとして 提供しているのが Vertex AI MLOps on Vertex AI https://cloud.google.com/vertex-ai/docs/start/introduction- mlops
Vertex Pipelines Vertex AI の機械学習パイプ ラインを実行するためのサ ービス コンテナを立ち上げて、バ ッチ処理し、コンテナを終 了するだけ
記述には KFP (Kubeflow Pipelines) SDK を用いる MLOps: 機械学習における継続的デリバリーと自動化のパイプライン https://cloud.google.com/architecture/mlops-continuous-delivery-and- automation-pipelines-in-machine-learning
3 つの書き方 Lightweight Python Components Containerized Python Components Container Components
第一選択は Lightweight Python Components Kubeflow Pipelines v2 で Pipeline の書き方がかなり変わる件について https://zenn.dev/asei/articles/introduction-to-kfp-v2
Lightweight Python Component 次のような Python の関数を用意 def hello_world(text: str) ->
str: print(text) return text デコレーターを用いてコンポーネント化 @component(base_image="python:3.9") def hello_world(text: str) -> str: print(text) return text
Hello, world: 全体像 @component(base_image="python:3.9") def hello_world(text: str) -> str: print(text)
return text @dsl.pipeline( name="intro-pipeline-unique", description="A simple intro pipeline", pipeline_root=PIPELINE_ROOT, ) def pipeline(text: str = "hi there"): hw_task = hello_world(text=text) compiler.Compiler().compile( pipeline_func=pipeline, package_path="intro_pipeline.yaml")
Hello, world: コンポーネントの定義 @component(base_image="python:3.9") def hello_world(text: str) -> str: print(text)
return text コンポーネントを定義 宣言したコンポーネントはパイプラインのなかで呼ぶ
Hello, world: パイプラインの定義 @dsl.pipeline( name="intro-pipeline-unique", # 名前の指定 description="A simple intro
pipeline", # 処理内容のコメント pipeline_root="gs://your-ml-bucket", # 結果の保存先 (GCS) ) def pipeline(text: str = "hi there"): # 先程定義したコンポーネント hello_world を呼び出す hw_task = hello_world(text=text) # 返り値は PipelineTask と呼ばれる パイプラインのデコレーターの引数は保存先の指定だけ必要 (あとでも 良い)
Hello, world: パイプラインのコンパイル # コンパイルする compiler.Compiler().compile( pipeline_func=pipeline, package_path="intro_pipeline.yaml" ) Python
で定義したパイプラインを、Vertex Pipelines にわたすための設 定ファイル (YAML) にコンパイル 生成される intro_pipeline.yaml は pipeline_spec という中間言語 になっている
Hello, world: パイプ ラインの実行 YAML ファイルを アップロード パイプラインの名 前や、実行結果の 保存先を指定
Hello, world: 結果 作成したパイプラ インを表示 コンポーネントご とに入出力が表示 される (右下)
コンポーネントの繋げ方: パイプラインの定義 @dsl.pipeline( pipeline_root="gs://your-ml-bucket", ) def pipeline(text: str = "hi
there"): first_task = hello_world(text=text) second_task = hello_world(text=first_task.output) コンポーネントの出力を次のコンポーネントにわたすには、そのまま出 力を渡してあげれば良い
コンポーネントの繋 げ方: 実行結果 実行順から依存関 係が解析され、パ イプラインが定義 される 条件分岐や fun- out,
fun-in も可能
複雑なパイプライン 実際の構築に当たってはチュー トリアルを見ておくと良い Vertex AI Pipelines: Pipelines introduction for KFP
Vertex AI Pipelines: Lightweight Python function-based components, and component I/O Vertex AI Pipelines Jupyter notebooks https://cloud.google.com/vertex- ai/docs/pipelines/notebooks
TOC Basics of Kubeflow Pipelines Migration from v1 to v2
<-
Migration from v1 to v2 Timeline V1 Component YAML support
Container Op Pythonic artifact syntax Fan-out, Fan-in Containerized Python Components
Timeline Vertex Pipelines における KFP SDK 1.8 のサポートは 2024 年
12 月 20 日に終了 KFP SDK v2 を用いても v1 と同じ記述はできるもの の、warning が発生する Supported frameworks list | Vertex AI | Google Cloud https://cloud.google.com/vertex-ai/docs/supported-frameworks- list#pipelines
V1 Component YAML support 今までは YAML をコンポー ネントの定義のために書い ていた 既存の
YAML ファイルは後 方互換性のためサポートさ れる とはいえ移行を考えたほう が良い Migrate from KFP SDK v1 | Kubeflow https://www.kubeflow.org/docs/components/pipelines/v2/migration/
Container Op docker run のような記述ができるコンポーネント Container Components | Kubeflow https://www.kubeflow.org/docs/components/pipelines/v2/components/container-components/
Pythonic artifact syntax (1/2) これまでは入出力を関数の引数として定義する必要があった @dsl.component(base_image="python:3.10") def id_func(input: Input[int], metric:
Output[Metrics]): Path(metric.path).write_text(str(input)) return metric
Pythonic artifact syntax (1/2) v2 では通常の Python 関数のように出力を返り値として定義可能 @dsl.component(base_image="python:3.10") def
id_func(input: int) -> Metrics: from pathlib import Path metric = Metrics( uri=dsl.get_uri(), metadata={'value':input} ) Path(metric.path).write_text(str(input)) return metric
Fan-out, Fan-in (1/4) このようなコンポーネントを用意 @dsl.component(base_image="python:3.10") def id_func(input: int) -> Metrics:
from pathlib import Path metric = Metrics( uri=dsl.get_uri(), metadata={'value':input} ) Path(metric.path).write_text(str(input)) return metric @dsl.component(base_image="python:3.10") def calc_average(models: list[Metrics]) -> float: return sum([float(model.metadata['value']) for model in models]) / len(models)
Fan-out, Fan-in (2/4) Fan-out のために dsl.ParallelFor を利用 Fan-in のために dsl.Collected
を利用 @dsl.pipeline def fanin_pipeline(): with dsl.ParallelFor( items=[i for i in range(10)], ) as item: id_func_task = id_func(input=item) calc_average(models=dsl.Collected(id_func_task.output))
Fan-out, Fan-in (3/4) コンポーネントには Artifact の list が渡される @dsl.component(base_image="python:3.10") def
calc_average(models: list[Metrics]) -> float: # 略
Fan-out, Fan-in (4/4) パイプラインの実行結果は右の ようになる
Containerized Python Components 今回は時間の都合上割愛 解説を書きました Kubeflow Pipelines v2 で Pipeline
の書き方がかなり変わる件について https://zenn.dev/asei/articles/introduction-to-kfp-v2
Resource Migrate from KFP SDK v1 は必読 LayerX のブログ記事がかな り実践的
Vertex AI Pipelinesを用いて爆速ML開発の仕組みを構築する #LayerXテックア ドカレ - LayerX エンジニアブログ https://tech.layerx.co.jp/entry/2023/11/16/185944
まとめ KFP SDK v2 がリリースされて推奨されるパイプラインの書き方がだい ぶ変わりました KFP SDK v1 の書き方をしたパイプラインもしばらく使えますが、
Vertex Pipelines では2024年12月に EOF を迎えます Fun-in といった新しい機能も使えるようになったので、リリースを確認 し、マイグレーションを計画するとよいでしょう