Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
SNLP2019
Search
Ayana Niwa
September 25, 2019
Research
1
470
SNLP2019
第11回最先端NLP勉強会 発表資料
Ayana Niwa
September 25, 2019
Tweet
Share
More Decks by Ayana Niwa
See All by Ayana Niwa
A Quick Overview to Unlock the Potential of LLMs through Prompt Engineering
ayaniwa
0
100
Learning To Retrieve Prompts for In-Context Learning
ayaniwa
0
980
UnNatural Language Inference
ayaniwa
0
380
Trends in Natural Language Processing at NeurIPS 2019.
ayaniwa
8
4.3k
Other Decks in Research
See All in Research
marukotenant01/tenant-20240826
marketing2024
0
510
Embers of Autoregression: Understanding Large Language Models Through the Problem They are Trained to Solve
eumesy
PRO
7
1.2k
言語と数理の交差点:テキストの埋め込みと構造のモデル化 (IBIS 2024 チュートリアル)
yukiar
3
720
最近のVisual Odometryと Depth Estimation
sgk
1
270
機械学習による言語パフォーマンスの評価
langstat
6
720
Large Vision Language Model (LVLM) に関する最新知見まとめ (Part 1)
onely7
18
3.1k
論文紹介/Expectations over Unspoken Alternatives Predict Pragmatic Inferences
chemical_tree
1
260
20240820: Minimum Bayes Risk Decoding for High-Quality Text Generation Beyond High-Probability Text
de9uch1
0
120
Global Evidence Summit (GES) 参加報告
daimoriwaki
0
150
[ECCV2024読み会] 衛星画像からの地上画像生成
elith
1
650
Weekly AI Agents News! 9月号 プロダクト/ニュースのアーカイブ
masatoto
2
140
メールからの名刺情報抽出におけるLLM活用 / Use of LLM in extracting business card information from e-mails
sansan_randd
2
140
Featured
See All Featured
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
6
410
Teambox: Starting and Learning
jrom
133
8.8k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
229
52k
How To Stay Up To Date on Web Technology
chriscoyier
788
250k
Building a Modern Day E-commerce SEO Strategy
aleyda
38
6.9k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
246
1.3M
Art, The Web, and Tiny UX
lynnandtonic
297
20k
How to train your dragon (web standard)
notwaldorf
88
5.7k
VelocityConf: Rendering Performance Case Studies
addyosmani
325
24k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
27
4.3k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
131
33k
Into the Great Unknown - MozCon
thekraken
32
1.5k
Transcript
Probing for Semantic Classes: Diagnosing the Meaning Content of Word
Embeddings Yadollah Yaghoobzadeh, Katharina Kann, Timothy J. Hazen, Eneko Agirre, Hinrich Schutze ACL2019 11 NLP 2019/09/28 <
[email protected]
>
Outline 2 H9P=O8 O8 "!PC
$@K !.S%,'3 F5T&*'$:I P=O8$.S%,'PV ! R<72$PC H/+%)- >#"!.S O8! H9E69NR<72;BJ?Q1L >#".S(rare senses)P=O8APM0 " 4D('% UG
Background 3 # " !Word2VecGrove #"NLPIR* - ELMoBERT
$'+ ) %" full-space , % & L "$( " # &!
Background 4 # "@!Semantic class>*( S-class , "@=6:-&C?4=6
B $8 SEMCAT, HyperLex… =1;+=62%A → 0# .9/ - WIKI-PSE(WIKIpedia-based resource for Probing Semantics in word Embeddings) - "@=1;+sense embedding'7) “Lamb” Food3< Living-thing5< "@ !
Background 5 # Apple Apple Apple
+ Word embeddingsense embedding Arora et al. (2018) Arora et al. (2018) Word embedding sparse coding WIKI-PSEsense embedding Word embedding Sense embedding Sense embedding
WIKI-PSE Resource 6 Wikipedia .!2,$# .! ()
S-class 113 FIGER types%+134"10 person/authorperson/politician… à person -S-class *'.!/.! & - S-class0
WIKI-PSE Resource 7 "$% %2& +:! 343,000-6.-S-class#5'5000;-!% 75,.6,.83
+*1! /4 44,250- -S-class - S-class )0organization (9food @apple@ – food @apple@ – organization
8 Word embedding (word) @apple@ WIKI-PSE
word embedding Sense embedding @apple@ @apple@ - food @apple@ - organization @ word/S-class Uniform sum (unifΣ) !" Weighted sum (wghtΣ) !" # = % " !" #&" # Aggregated word embedding #&" Sense (word/S-class) embeddings word, unifΣ, wghtΣ
Experiments 9 Problem settings SkipGram Structured SkipGram
WIKI-PSE (LR) # (MLP k*)KNN) 1. word % word embedding 2. unifΣ sense embedding " 3. wghtΣ sense embedding ! $'& (" Word embedding
Experiments 10 Probing Task 1S-class Prediction S-class
@apple@ +food ∩ +organization ∩ -event S-class
Experiments 11 MLP > LRKNN 8&!S-class ."7;5
KNN )#, *:3, <(3-/ unifΣ > word > wghtΣ 'rare sense 0$ 97< à Rare sense42%+6 unifΣ Probing Task 1S-class Prediction F11 4
Experiments 12 Probing Task 1S-class Prediction
unifΣ $ #rare sense (13,000) F1! "
Experiments 13 Probing Task 1S-class Prediction * #4(! Recall
) S-class& sense embedding+%3 Rare S-class/"12 %"0, .$- Recall Dominance S-class' Recall
Experiments 14 Probing Task 1S-class Prediction /&)5. !"$' ,(20-
3+1(#41( Personlocation,(20* S-class !"6 20% Recall Recall #4 ,(20 Typicality Recall
Experiments 15 " Probing Task 2Ambiguity
Prediction ! L2 SSKIP$" LR / KNN / MLP ! ! unifΣ > word > wghtΣ KNN à % FREQUENCY(Baseline) # &LR
NLP Application Experiments 16 wghtΣ > word >(=) unifΣ <--
Probing task #!! -the U.S. Attorney’s Office announced Friday → location Common S-classtime Rare S-class location Friday mountain unifΣ ( !+ entity mention MC ), CRMR $)& SUBJ %*' MRPC " S-class
Summary & Conclusion 17 * $2"(3 WIKI-PSE'. 1)/& 0+$2/&
1, 1)/&% # 0+$2- a a e Rare sense e harder NLP Rare sense !# e