Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
SNLP2019
Search
Ayana Niwa
September 25, 2019
Research
1
520
SNLP2019
第11回最先端NLP勉強会 発表資料
Ayana Niwa
September 25, 2019
Tweet
Share
More Decks by Ayana Niwa
See All by Ayana Niwa
A Quick Overview to Unlock the Potential of LLMs through Prompt Engineering
ayaniwa
0
140
Learning To Retrieve Prompts for In-Context Learning
ayaniwa
0
1.1k
UnNatural Language Inference
ayaniwa
0
410
Trends in Natural Language Processing at NeurIPS 2019.
ayaniwa
8
4.4k
Other Decks in Research
See All in Research
[輪講] SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features
nk35jk
2
460
Type Theory as a Formal Basis of Natural Language Semantics
daikimatsuoka
1
220
言語モデルによるAI創薬の進展 / Advancements in AI-Driven Drug Discovery Using Language Models
tsurubee
2
370
NLP2025SharedTask翻訳部門
moriokataku
0
290
Principled AI ~深層学習時代における課題解決の方法論~
taniai
3
1.2k
Large Language Model Agent: A Survey on Methodology, Applications and Challenges
shunk031
12
8k
SSII2025 [TS2] リモートセンシング画像処理の最前線
ssii
PRO
7
2.8k
ストレス計測方法の確立に向けたマルチモーダルデータの活用
yurikomium
0
540
「エージェントって何?」から「実際の開発現場で役立つ考え方やベストプラクティス」まで
mickey_kubo
0
120
研究テーマのデザインと研究遂行の方法論
hisashiishihara
5
1.4k
在庫管理のための機械学習と最適化の融合
mickey_kubo
3
1.1k
生成的推薦の人気バイアスの分析:暗記の観点から / JSAI2025
upura
0
170
Featured
See All Featured
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
16
940
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Facilitating Awesome Meetings
lara
54
6.4k
Code Review Best Practice
trishagee
68
18k
Rails Girls Zürich Keynote
gr2m
94
14k
Statistics for Hackers
jakevdp
799
220k
Practical Orchestrator
shlominoach
188
11k
Build The Right Thing And Hit Your Dates
maggiecrowley
36
2.8k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3k
Adopting Sorbet at Scale
ufuk
77
9.4k
[RailsConf 2023] Rails as a piece of cake
palkan
55
5.6k
Transcript
Probing for Semantic Classes: Diagnosing the Meaning Content of Word
Embeddings Yadollah Yaghoobzadeh, Katharina Kann, Timothy J. Hazen, Eneko Agirre, Hinrich Schutze ACL2019 11 NLP 2019/09/28 <
[email protected]
>
Outline 2 H9P=O8 O8 "!PC
$@K !.S%,'3 F5T&*'$:I P=O8$.S%,'PV ! R<72$PC H/+%)- >#"!.S O8! H9E69NR<72;BJ?Q1L >#".S(rare senses)P=O8APM0 " 4D('% UG
Background 3 # " !Word2VecGrove #"NLPIR* - ELMoBERT
$'+ ) %" full-space , % & L "$( " # &!
Background 4 # "@!Semantic class>*( S-class , "@=6:-&C?4=6
B $8 SEMCAT, HyperLex… =1;+=62%A → 0# .9/ - WIKI-PSE(WIKIpedia-based resource for Probing Semantics in word Embeddings) - "@=1;+sense embedding'7) “Lamb” Food3< Living-thing5< "@ !
Background 5 # Apple Apple Apple
+ Word embeddingsense embedding Arora et al. (2018) Arora et al. (2018) Word embedding sparse coding WIKI-PSEsense embedding Word embedding Sense embedding Sense embedding
WIKI-PSE Resource 6 Wikipedia .!2,$# .! ()
S-class 113 FIGER types%+134"10 person/authorperson/politician… à person -S-class *'.!/.! & - S-class0
WIKI-PSE Resource 7 "$% %2& +:! 343,000-6.-S-class#5'5000;-!% 75,.6,.83
+*1! /4 44,250- -S-class - S-class )0organization (9food @apple@ – food @apple@ – organization
8 Word embedding (word) @apple@ WIKI-PSE
word embedding Sense embedding @apple@ @apple@ - food @apple@ - organization @ word/S-class Uniform sum (unifΣ) !" Weighted sum (wghtΣ) !" # = % " !" #&" # Aggregated word embedding #&" Sense (word/S-class) embeddings word, unifΣ, wghtΣ
Experiments 9 Problem settings SkipGram Structured SkipGram
WIKI-PSE (LR) # (MLP k*)KNN) 1. word % word embedding 2. unifΣ sense embedding " 3. wghtΣ sense embedding ! $'& (" Word embedding
Experiments 10 Probing Task 1S-class Prediction S-class
@apple@ +food ∩ +organization ∩ -event S-class
Experiments 11 MLP > LRKNN 8&!S-class ."7;5
KNN )#, *:3, <(3-/ unifΣ > word > wghtΣ 'rare sense 0$ 97< à Rare sense42%+6 unifΣ Probing Task 1S-class Prediction F11 4
Experiments 12 Probing Task 1S-class Prediction
unifΣ $ #rare sense (13,000) F1! "
Experiments 13 Probing Task 1S-class Prediction * #4(! Recall
) S-class& sense embedding+%3 Rare S-class/"12 %"0, .$- Recall Dominance S-class' Recall
Experiments 14 Probing Task 1S-class Prediction /&)5. !"$' ,(20-
3+1(#41( Personlocation,(20* S-class !"6 20% Recall Recall #4 ,(20 Typicality Recall
Experiments 15 " Probing Task 2Ambiguity
Prediction ! L2 SSKIP$" LR / KNN / MLP ! ! unifΣ > word > wghtΣ KNN à % FREQUENCY(Baseline) # &LR
NLP Application Experiments 16 wghtΣ > word >(=) unifΣ <--
Probing task #!! -the U.S. Attorney’s Office announced Friday → location Common S-classtime Rare S-class location Friday mountain unifΣ ( !+ entity mention MC ), CRMR $)& SUBJ %*' MRPC " S-class
Summary & Conclusion 17 * $2"(3 WIKI-PSE'. 1)/& 0+$2/&
1, 1)/&% # 0+$2- a a e Rare sense e harder NLP Rare sense !# e