Upgrade to Pro — share decks privately, control downloads, hide ads and more …

大規模疑似データを用いた高性能文法誤り訂正モデルの構築

 大規模疑似データを用いた高性能文法誤り訂正モデルの構築

Shun Kiyono

March 18, 2020
Tweet

More Decks by Shun Kiyono

Other Decks in Research

Transcript

  1. λεΫɿจ๏ޡΓగਖ਼ʢGECʣ • ೖྗ: จ๏ޡΓΛؚΉจ • ग़ྗ: จ๏తʹਖ਼͍͠จ • ۙ೥͸຋༁ͷ࿮૊ΈͰऔΓ૊Ήͷ͕Ұൠత March

    20, 2020 RIKEN AIP / Tohoku University 2 I follows his advice I followed his advice Ϟσϧ (ྫ: Encoder-Decoder) ೖྗ ग़ྗ Grammatical Error Correction
  2. GECͷ໰୊ɿσʔλ͕଍Γͳ͍ • ࠷΋ن໛ͷେ͖ͳίʔύε(Lang-8)Ͱ΋2Mจର • σʔλͷྔΛ૿΍͢͜ͱ͸ॏཁ • ۙ೥ɺGECʹ͓͚Δʮٙࣅσʔλੜ੒ʯ͕੝Μ • BEA-2019 Shared

    TaskͰ΋΄ͱΜͲͷνʔϜ͕࠾༻ March 20, 2020 RIKEN AIP / Tohoku University 3 5 4 + reduce batch size (4k ! 1k tokens) 12.40 ± 0.08 31.97 ± 0 6 5 + lexical model 13.03 ± 0.49 31.80 ± 0 7 5 + aggressive (word) dropout 15.87 ± 0.09 33.60 ± 0 8 7 + other hyperparameter tuning (learning rate, 16.57 ± 0.26 32.80 ± 0 model depth, label smoothing rate) 9 8 + lexical model 16.10 ± 0.29 33.30 ± 0 Table 2: German!English IWSLT results for training corpus size of 100k words and 3.2M words (full c Mean and standard deviation of three training runs reported. 105 106 0 10 20 30 32.8 30.8 28.7 24.4 20.6 16.6 26.6 24.9 23 20.5 18.3 16 25.7 18.5 11.6 1.8 1.3 0 corpus size (English words) BLEU neural MT optimized phrase-based SMT neural MT baseline Figure 2: German!English learning curve, showing BLEU as a function of the amount of parallel training data, for PBSMT and NMT. 4.3 NMT Systems We train neural systems with Nematus (Sennrich et al., 2017b). Our baseline mostly follows the size, model depth, regularization paramete learning rate. Detailed hyperparameters ported in Appendix A. 5 Results Table 2 shows the effect of adding different ods to the baseline NMT system, on the ult data condition (100k words of training dat the full IWSLT 14 training corpus (3.2M w Our ”mainstream improvements” add aroun BLEU in both data conditions. In the ultra-low data condition, reduci BPE vocabulary size is very effective BLEU). Reducing the batch size to 1000 to sults in a BLEU gain of 0.3, and the lexical yields an additional +0.6 BLEU. Howeve gressive (word) dropout6 (+3.4 BLEU) and other hyperparameters (+0.7 BLEU) has a st effect than the lexical model, and adding t Figure from [Sennrich and Zhang 2019]
  3. ʮਅʯͷσʔλΛ༻ֶ͍ͨश March 20, 2020 RIKEN AIP / Tohoku University 4

    ਅͷσʔλ (ྫ: Lang-8) Ϟσϧ ܇࿅ ೖྗจ ग़ྗจ
  4. ٙࣅσʔλΛऔΓೖΕΔ৔߹ March 20, 2020 RIKEN AIP / Tohoku University 5

    ਅͷσʔλ Ϟσϧ ܇࿅ ੜ੒ݩίʔύε (e.g. Wikipedia) ٙࣅσʔλ ੜ੒ख๏ จ๏తͳจͷू߹ ٙࣅσʔλ ٙࣅσʔλ
  5. ໰୊ɿͲ͏΍ͬͯٙࣅσʔλΛ࢖͏ʁ • ٙࣅσʔλΛ࢖͏ͱ͖ʹؾʹͳΔ఺ • ݱঢ়ɺ֤ݚڀͰઃఆ͕ҟͳΔ • ൺֱ࣮ݧ͸ଘࡏ͠ͳ͍ • ݁ہͲ͏͢Ε͹͍͍ͷ͔Ṗ •

    ຊݚڀͷΰʔϧɿޮՌతͳઃఆͷ୳ࡧ • ֤ཁૉʹ͍ͭͯϕετͳઃఆΛݟ͚ͭग़͢ March 20, 2020 RIKEN AIP / Tohoku University 6 Q1: ٙࣅσʔλੜ੒ͷख๏ΛͲ͏͢Δʁ Q2: ੜ੒ݩίʔύεͷछྨΛͲ͏͢Δʁ Q3: Ϟσϧͷ࠷దԽΛͲ͏͢Δʁ
  6. ߩݙɿ͍͢͝GECϞσϧ 1. ௒େن໛ʢ~70MจରʣͳٙࣅσʔλΛ༻͍ͯ 2. طଘͷEncoder-DecoderϞσϧΛ܇࿅͠ 3. 2019೥౰࣌ͷੈք࠷ߴੑೳΛୡ੒ March 20, 2020

    RIKEN AIP / Tohoku University 7 ੈքͰ࠷ॳʹF0.5 ஋70௒͑Λୡ੒ #&"ͷϦʔμʔϘʔυ ֶशࡁΈϞσϧΛ(JU)VCͰެ։த Fairseqϕʔε ࠓ೔͔Β࢖͑·͢ TEAM RIKEN https://github.com/butsugiri/gec-pseudodata
  7. ໰୊ɿͲ͏΍ͬͯٙࣅσʔλΛ࢖͏ʁ • ٙࣅσʔλΛ࢖͏ͱ͖ʹؾʹͳΔ఺ • ݱঢ়ɺ֤ݚڀͰઃఆ͕ҟͳΔ • ൺֱ࣮ݧ͸ଘࡏ͠ͳ͍ • ݁ہͲ͏͢Ε͹͍͍ͷ͔Ṗ •

    ຊݚڀͷΰʔϧɿޮՌతͳઃఆͷ୳ࡧ • ֤ཁૉʹ͍ͭͯϕετͳઃఆΛݟ͚ͭग़͢ March 20, 2020 RIKEN AIP / Tohoku University 8 Q1: ٙࣅσʔλੜ੒ͷख๏ΛͲ͏͢Δʁ Q2: ੜ੒ݩίʔύεͷछྨΛͲ͏͢Δʁ Q3: Ϟσϧͷ࠷దԽΛͲ͏͢Δʁ
  8. Q1: ٙࣅσʔλੜ੒ͷख๏ΛͲ͏͢Δʁ March 20, 2020 RIKEN AIP / Tohoku University

    9 ਅͷσʔλ Ϟσϧ ܇࿅ ੜ੒ݩίʔύε (e.g. Wikipedia) ٙࣅσʔλ ੜ੒ख๏ ٙࣅσʔλ ٙࣅσʔλ
  9. Q1: ٙࣅσʔλੜ੒ͷख๏ΛͲ͏͢Δʁ • BACKTRANS (NOISY) [Xie+2018] • ϊΠζ෇͖ٯ຋༁ʹΑΓٖࣅσʔλΛੜ੒ • DIRECTNOISE

    [Zhao+2019] • จʹϥϯμϜͳϊΠζΛ௚઀෇༩͢Δ • ֤ख๏ͷৄࡉ͸࿦จΛࢀর͍ͯͩ͘͠͞ March 20, 2020 RIKEN AIP / Tohoku University 10 rea@@ ter London . DIRECTNOISE: hmaski hmaski hmaski for hmaski hmaski hmaski hmaski Original: The cli@@ p is mixed with images of Toronto streets during power failure . BACKTRANS (NOISY): The cli@@ p is mix with images of Toronto streets during power failure . DIRECTNOISE: The hmaski is mixed hmaski images si@@ of The hmaski streets large hmaski power R@@ failure place hmaski Original: At the in@@ stitute , she introduced tis@@ sue culture methods that she had learned in the U.@@ S. BACKTRANS (NOISY): At in@@ stitute , She introduced tis@@ sue culture method that she learned in U.@@ S. DIRECTNOISE: hmaski the the hmaski hmaski hmaski hmaski tis@@ culture R@@ methods , she P hmaski the s U.@@ hmaski Figure 5: Examples of sentences generated by BACKTRANS (NOISY) and DIRECTNOISE methods. Fig. 6 shows examples generated by DIRECTNOISE, when changing the mask probability (µmask). µmask Output Sentence N/A He threw the sand@@ wi@@ ch at his wife . 0.1 He ale threw , ch his ne@@ wife dar@@ hmaski 0.3 hmaski hmaski hmaski hmaski ch at ament his Research . 0.5 He o threw the sand@@ ch hmaski his hmaski . 0.7 hmaski hmaski sand@@ hmaski hmaski hmaski hmaski wife hmaski Figure 6: Examples generated when varying µmask . N/A denotes original text.
  10. Q2: ੜ੒ݩίʔύεͷछྨΛͲ͏͢Δʁ March 20, 2020 RIKEN AIP / Tohoku University

    11 ਅͷσʔλ Ϟσϧ ܇࿅ ੜ੒ݩίʔύε (e.g. Wikipedia) ٙࣅσʔλ ੜ੒ख๏ ٙࣅσʔλ ٙࣅσʔλ
  11. Q2: ੜ੒ݩίʔύεͷछྨΛͲ͏͢Δʁ • ͨ͘͞Μͷީิ͕ଘࡏ: • Wikipedia, 1-billion word benchmark, BookCorpus

    ͳͲ • [Ge+2018]: Wikipedia • [Zhao+2019]: 1-billion word LM benchmark • [Xie+2018]: NYT corpus • [Grundkiewicz+2019]: News Crawl • GECϞσϧʹ͸Ͳͷίʔύε͕ద͍ͯ͠Δͷ͔ʁ • ຊݚڀɿҎԼͷίʔύεΛൺֱݕ౼ • Simple Wikipedia • Wikipedia • LDC Gigaword March 20, 2020 RIKEN AIP / Tohoku University 12 υϝΠϯ͸ಉ͡ɻจ๏తͳෳࡶ͕͞ҟͳΔɻ Gigaword͸৽ฉهࣄ⇛ϊΠζখͱظ଴
  12. Q3: ٙࣅσʔλΛ༻͍ͨ࠷దԽख๏ΛͲ͏͢Δʁ March 20, 2020 RIKEN AIP / Tohoku University

    13 ਅͷσʔλ Ϟσϧ ܇࿅ ੜ੒ݩίʔύε (e.g. Wikipedia) ٙࣅσʔλ ੜ੒ख๏ ٙࣅσʔλ ٙࣅσʔλ
  13. Q3: ٙࣅσʔλΛ༻͍ͨ࠷దԽख๏ΛͲ͏͢Δʁ March 20, 2020 RIKEN AIP / Tohoku University

    14 ಉ࣌ʹֶश͢Δ JOINT ·ͣ1SFUSBJOɺͦͷޙ 'JOFUVOF PRETRAIN Training Pre-training Fine-tuning ͲͪΒ͕ΑΓ ߴੑೳ͔ʁ ਅͷσʔλ ٙࣅσʔλ ٙࣅσʔλ ਅͷσʔλ
  14. ࣮ݧઃఆɾσʔληοτ • ʮҰൠతʯͳઃఆΛ࠾༻ • Ϟσϧ: Transformer (Big) [Vaswani+2017] • ࠷దԽ:

    Adam (pretrain) ɾ Adafactor (fine-tuning) • σʔληοτ • BEA-2019 dataset (train/valid/test) [Bryant+2019] • CoNLL2014 (test) [Ng+2014] • JFLEG (test) [Napoles+2017] March 20, 2020 RIKEN AIP / Tohoku University 15
  15. ࣮ݧ1: ੜ੒ݩίʔύεͷબఆ • ઃఆ: JOINT March 20, 2020 RIKEN AIP

    / Tohoku University 16 • ੜ੒ݩίʔύεͷੑೳ΁ͷӨڹ͸খ͍͞ʁ • ͔͠͠ɺ(JHBXPSE͕Ұ؏ͯ͠ྑ͍ • จ๏త ͖Ε͍ͳจΛ׆༻͢Δ͜ͱͷॏཁੑΛࣔࠦ Method Seed Corpus T Prec. Rec. F0.5 Baseline N/A 46.6 23.1 38.8 BACKTRANS (NOISY) Wikipedia 43.8 30.8 40.4 BACKTRANS (NOISY) SimpleWiki 42.5 31.3 39.7 BACKTRANS (NOISY) Gigaword 43.1 33.1 40.6 DIRECTNOISE Wikipedia 48.3 25.5 41.0 DIRECTNOISE SimpleWiki 48.9 25.7 41.4 DIRECTNOISE Gigaword 48.3 26.9 41.7 Table 3: Performance on BEA-valid when changing the seed corpus T used for generating pseudo data (|Dp | = 1.4M). DIRECTNOISE with Gigaword achieves the best value of F0.5 among all the configurations. Optimization Metho N/A Baseli PRETRAIN BACK PRETRAIN DIREC JOINT BACK JOINT DIREC PRETRAIN BACK PRETRAIN DIREC JOINT BACK JOINT DIREC Table 4: Performan mization settings o Wikipedia. ੑೳมԽখ ੑೳมԽখ
  16. ࣮ݧ1: ੜ੒ݩίʔύεͷબఆ • ઃఆ: JOINT March 20, 2020 RIKEN AIP

    / Tohoku University 17 • ੜ੒ݩίʔύεͷੑೳ΁ͷӨڹ͸খ͍͞ʁ • ͔͠͠ɺ(JHBXPSE͕Ұ؏ͯ͠ྑ͍ • จ๏త ͖Ε͍ͳจΛ׆༻͢Δ͜ͱͷॏཁੑΛࣔࠦ Method Seed Corpus T Prec. Rec. F0.5 Baseline N/A 46.6 23.1 38.8 BACKTRANS (NOISY) Wikipedia 43.8 30.8 40.4 BACKTRANS (NOISY) SimpleWiki 42.5 31.3 39.7 BACKTRANS (NOISY) Gigaword 43.1 33.1 40.6 DIRECTNOISE Wikipedia 48.3 25.5 41.0 DIRECTNOISE SimpleWiki 48.9 25.7 41.4 DIRECTNOISE Gigaword 48.3 26.9 41.7 Table 3: Performance on BEA-valid when changing the seed corpus T used for generating pseudo data (|Dp | = 1.4M). DIRECTNOISE with Gigaword achieves the best value of F0.5 among all the configurations. Optimization Metho N/A Baseli PRETRAIN BACK PRETRAIN DIREC JOINT BACK JOINT DIREC PRETRAIN BACK PRETRAIN DIREC JOINT BACK JOINT DIREC Table 4: Performan mization settings o Wikipedia. ੑೳมԽখ ੑೳมԽখ ౴1: GigawordΛ࢖͏΂͠
  17. ࣮ݧ2: ٙࣅσʔλͷ׆༻ํ๏ • ઃఆ: WikipediaΛੜ੒ݩσʔλͱͯ͠ར༻ March 20, 2020 RIKEN AIP

    / Tohoku University 18 • ਅͷσʔλͱٙࣅσʔλͷྔ͕େମಉ͡ͷ৔߹ à PRETRAIN ͱ JOINT ͸େମಉ͡ੑೳ PRETRAIN JOINT 36 38 40 42 44 46 Backtrans (noisy) DirectNoise F0.5 Score Pseudo Data = 1.4M 36 38 40 42 44 46 Backtrans (noisy) DirectNoise F0.5 Score Pseudo Data = 1.4M
  18. ࣮ݧ2: ٙࣅσʔλͷ׆༻ํ๏ • ઃఆ: WikipediaΛੜ੒ݩσʔλͱͯ͠ར༻ March 20, 2020 RIKEN AIP

    / Tohoku University 19 • PretrainͰ͸ɺٙࣅσʔλͷྔΛ૿΍͢͜ͱͰݦஶʹੑೳ޲্ • Ұํɺ JOINTͰ͸ੑೳ޲্Λ֬ೝͰ͖ͣ • ٙࣅσʔλ͔Βͷڭࢣ৴߸͕JOINTͰࢧ഑తʹͳͬͯ͠·͏໰୊ PRETRAIN JOINT 36 38 40 42 44 46 Backtrans (noisy) DirectNoise F0.5 Score Pseudo Data = 1.4M Pseudo Data = 14M 36 38 40 42 44 46 Backtrans (noisy) DirectNoise F0.5 Score Pseudo Data = 1.4M Pseudo Data = 14M
  19. ࣮ݧ3: ٙࣅσʔλͷྔΛ૿΍͢ • BACKTRANS (NOISY) ͕ DIRECTNOISE Λ্ճΔੑೳ March 20,

    2020 RIKEN AIP / Tohoku University 20 100 101 102 Amount of Pseudo Data |Dp | (M) 40 42 44 46 F0.5 score Baseline Backtrans (noisy) DirectNoise
  20. ࣮ݧ3: ٙࣅσʔλͷྔΛ૿΍͢ • BACKTRANS (NOISY) ͕ DIRECTNOISE Λ্ճΔੑೳ March 20,

    2020 RIKEN AIP / Tohoku University 21 100 101 102 Amount of Pseudo Data |Dp | (M) 40 42 44 46 F0.5 score Baseline Backtrans (noisy) DirectNoise ౴2: PRETRAIN+BACKTRANS (NOISY) ઃఆ͕༗ޮ
  21. ࣮ݧ݁Ռͷ·ͱΊ March 20, 2020 RIKEN AIP / Tohoku University 22

    LARGEPRETRAIN ౴2: PRETRAIN+BACKTRANS (NOISY) ઃఆ͕༗ޮ ౴1: GigawordΛ࢖͏΂͠
  22. طଘͷݚڀͱͷੑೳൺֱ March 20, 2020 RIKEN AIP / Tohoku University 23

    48 50 52 54 56 58 60 62 64 66 LargePretrain+Ensemble+SSE+R2L LargePretrain (Single Model) Grundkiewicz et al. (2019) Zhao et al. (2019) Lichtarge et al. (2019) Junczys-Dowmunt et al. (2018) Chollampatt and Ng (2018) F0.5  (CoNLL2014)
  23. 48 50 52 54 56 58 60 62 64 66

    LargePretrain+Ensemble+SSE+R2L LargePretrain (Single Model) Grundkiewicz et al. (2019) Zhao et al. (2019) Lichtarge et al. (2019) Junczys-Dowmunt et al. (2018) Chollampatt and Ng (2018) F0.5  (CoNLL2014) γϯάϧϞσϧͷ࣌఺Ͱߴੑೳ March 20, 2020 RIKEN AIP / Tohoku University 24 શͯΞϯαϯϒϧϞσϧ γϯάϧϞσϧͷੑೳ͕ɺ[Grundkiewicz+2019]Λআ͘ શͯͷΞϯαϯϒϧϞσϧΑΓ΋ߴੑೳ
  24. 48 50 52 54 56 58 60 62 64 66

    LargePretrain+Ensemble+SSE+R2L LargePretrain (Single Model) Grundkiewicz et al. (2019) Zhao et al. (2019) Lichtarge et al. (2019) Junczys-Dowmunt et al. (2018) Chollampatt and Ng (2018) F0.5  (CoNLL2014) ௥Ճख๏ʹΑΓߋʹੑೳ޲্ March 20, 2020 RIKEN AIP / Tohoku University 25 զʑͷϞσϧ͕ੈք࠷ߴੑೳΛୡ੒ ' 
  25. ·ͱΊ • GECͷٙࣅσʔλʹ·ͭΘΔҎԼͷཁૉΛݕূ • GECϞσϧʹదͨ͠ઃఆΛൃݟ (LARGEPRETRAIN) • طଘͷϕϯνϚʔΫσʔλͰੈք࠷ߴੑೳΛߋ৽ • ࣮૷ͱ܇࿅ࡁΈϞσϧΛެ։த

    • https://github.com/butsugiri/gec-pseudodata March 20, 2020 RIKEN AIP / Tohoku University 26 Q1: ٙࣅσʔλੜ੒ͷख๏ΛͲ͏͢Δʁ Q2: ੜ੒ݩίʔύεͷछྨΛͲ͏͢Δʁ Q3: ٙࣅσʔλΛ༻͍ͨ࠷దԽख๏ΛͲ͏͢Δʁ