Uszkoreit, H. (2018). Fine-grained evaluation of Quality Estimation for Machine translation based on a linguistically motivated Test Suite. In Proceedings of the AMTA 2018 Workshop on Translation Quality Estimation and Automatic Post-Editing (pp. 243–248). Association for Machine Translation in the Americas. • [Vaswani+2017]: Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A., Kaiser, ., & Polosukhin, I. (2017). Attention Is All You Need. In Advances in Neural Information Processing Systems 31 (NIPS 2017) (pp. 5998– 6008). • [Ott+2018]: Ott, M., Edunov, S., Grangier, D., & Auli, M. (2018). Scaling Neural Machine Translation. In Proceedings of the Third Conference on Machine Translation: Research Papers (pp. 1–9). Association for Computational Linguistics. • [Xiong+2020]: Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan Lan, Liwei Wang, & Tie-Yan Liu (2020). On Layer Normalization in the Transformer Architecture. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event (pp. 10524– 10533). PMLR. • [Sennrich+2016]: Sennrich, R., Haddow, B., & Birch, A. (2016). Improving Neural Machine Translation Models with Monolingual Data. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 86–96). Association for Computational Linguistics. • [Edunov+2020]: Edunov, S., Ott, M., Ranzato, M., & Auli, M. (2020). On The Evaluation of Machine Translation Systems Trained With Back-Translation. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (pp. 2836–2846). Association for Computational Linguistics. • [Bogoychev+2019]: Nikolay Bogoychev, & Rico Sennrich (2019). Domain, Translationese and Noise in Synthetic Data for Neural Machine Translation CoRR, abs/1911.03362. • [Freitag+2020]: Freitag, M., Grangier, D., & Caswell, I. (2020). BLEU might be Guilty but References are not Innocent. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP) (pp. 61–71). Association for Computational Linguistics. 46