Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
BigQueryの簡単データ参照
Search
chimame
December 08, 2019
Programming
1
380
BigQueryの簡単データ参照
GDG DevFest Osaka 2019
chimame
December 08, 2019
Tweet
Share
More Decks by chimame
See All by chimame
私がエッジを使う理由
chimame
10
3.9k
GraphQL Server on Edge after that
chimame
1
1.2k
Accelerating App Dev with Cloudflare Workers
chimame
1
360
GraphQL Server on Edge
chimame
12
5.4k
エッジで輝くフロントエンド
chimame
11
6.4k
Cloudflare Workersと状態管理
chimame
4
1.4k
CSRなサイトを (疑似的な)ISRに変更した話
chimame
0
530
Cloud Runマネージドに適したアプリケーションを考える
chimame
1
260
RDS Proxyを使ってAuroraと仲良くなる
chimame
0
1k
Other Decks in Programming
See All in Programming
事業フェーズの変化に対応する 開発生産性向上のゼロイチ
masaygggg
0
160
Our Websites Need a Lifestyle Change, Not a Diet
ryantownsend
0
120
unique パッケージから学ぶ interning と weak reference @ Asakusa.go#3
karamaru
1
300
Amazon BedrockでサーバレスなAIお料理ボットを作成する!!
tosuri13
0
190
Desafios e Lições Aprendidas na Migração de Monólitos para Microsserviços em Java
jessilyneh
2
140
connect-go で面倒くささと戦う / 2024-08-27 #newmo_layerx_go
izumin5210
2
620
【TID2024】模擬講義:プログラマと一緒にゲームをデザインしてみよう!
akatsukigames_tech
0
550
ブラウザ互換の重要性 - あらゆるユーザーに価値を届けるために必要なこと
yamanoku
0
110
Understand the mechanism! Let's do screenshots tests of Compose Previews with various variations / 仕組みから理解する!Composeプレビューを様々なバリエーションでスクリーンショットテストしよう
sumio
3
360
いつか使える ObjectSpace / Maybe useful ObjectSpace
euglena1215
2
130
dotfiles について話したい #湘なんか
stefafafan
2
290
僕が思い描くTypeScriptの未来を勝手に先取りする
yukukotani
9
2.3k
Featured
See All Featured
How GitHub Uses GitHub to Build GitHub
holman
472
290k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
26
1.9k
[RailsConf 2023] Rails as a piece of cake
palkan
46
4.6k
Building Your Own Lightsaber
phodgson
101
6k
The Art of Programming - Codeland 2020
erikaheidi
48
13k
How to Ace a Technical Interview
jacobian
275
23k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
190
16k
Typedesign – Prime Four
hannesfritz
39
2.3k
Reflections from 52 weeks, 52 projects
jeffersonlam
346
20k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
Fontdeck: Realign not Redesign
paulrobertlloyd
80
5.1k
The Pragmatic Product Professional
lauravandoore
31
6.2k
Transcript
BigQueryの 簡単データ参照 2019/12/08 GDG DevFest Osaka 2019 rito
Agenda ❏ 自己紹介 ❏ 以前のビッグデータ分析基盤 ❏ ビッグデータ出力の検討 ❏ Connected Sheetsの特徴
❏ まとめ 2
自己紹介 名前: rito 職業: Webエンジニア (アプリケーションエンジニア) 分野: Ruby on Rails,
Nodejs, React, Docker, AWS, GCP 所属: Ateam Finergy Inc. コミュニティ: GDG Osaka Rails follow-up Osaka Osaka Web Developers Meetup twitter: @chimame_rt GitHub: chimame 3
以前のビックデータ分析 基盤
構成 5 Amazon RDS Amazon Redshift Amazon RDS Amazon RDS
構成 6 Amazon RDS Amazon Redshift Amazon RDS Amazon RDS
各システムで保持しているデータをRedshiftに 集約
7 Amazon RDS Amazon RDS Amazon RDS 構成 Amazon Redshift
独自に構築したアプリケーションからデータを 参照・取得することが可能
8 Amazon RDS Amazon Redshift Amazon RDS Amazon RDS 構成
Microsoftが生み出した強力BIツールのExcel でデータをこねくり回す
以前のビッグデータ基盤の課題 ❏ アプケーションが作成されたのは2013年 ❏ ExcelのためのCSV出力機能でくそデカイデータ を落とすとメモリが足りず落ちる ❏ Redshiftって結構お高いです 9
そもそもこんな古いアプリケーション 面倒見たくない!!! 10
11 よろしいならば移行だ (言い出しっぺがやる法則)
12
ビックデータ出力の 検討
構成 14 Amazon RDS BigQuery Amazon RDS Amazon RDS New
とりあえずRedshift剥がして BigQueryにデータ入れるところから検討 15
16
選定理由 ❏ リアルタイムに連携する必要はない ❏ DigdagはEmbulkの再実行やエラーハンドリン グが楽 ❏ BigQueryはデータ”更新”が容易ではないので更 新ジョブも必要になり、Digdagでジョブフローとし て管理できるため
17
ここまでは簡単簡単 18
データは入れたら終わりじゃない 19
データは取り出せないと意味がない 20
しかもエンジニア以外にも 簡単に参照させる 21
Try1. Metabase 22
Amazon RDS Amazon RDS Amazon RDS 構成 23 BigQuery New
よかった点 ❏ BigQueryへのコネクタも標準で搭載 ❏ データのビジュアライズツールのおかげでエンジ ニア以外も簡単にデータ取得できる(SQL不要) 24
選択しなかった理由 ❏ 吐き出されるSQLではBigQueryのパーティショ ン分割テーブルに対応できない ❏ データをこねくり回すにはCSV出力してExcelを使 わなければならず、単体では厳しい 25
Try2. BigQuery to Spread Sheets by BigQuery data connecter 26
Amazon RDS Amazon RDS Amazon RDS 構成 27 BigQuery New
よかった点 ❏ 標準機能として提供されている安心感 ❏ セットアップいらずですぐに使用が開始できる 28
選択しなかった理由 ❏ データ取得にはSQLが必要 ❏ 取得できたとしても最大1万行という制約 29
Try3. BigQuery to Spread Sheets by Google Apps Script 30
Amazon RDS Amazon RDS Amazon RDS 構成 31 BigQuery New
よかった点 ❏ 標準のBigQuery data connecterの1万行制 限を超えることができる 32
選択しなかった理由 ❏ プログラムの配布が面倒(アドオン配布 ❏ 標準のBigQuery data connecterより重い ❏ SQLがやっぱり必要になる 33
どれもいい案とは言えない 34
Google Cloud Next'19 で発表された Connected Sheetsの存在は知ってた 35
過去にβ使用の申請はあげていが まだリリースされない 36
(メールを貼り付ける) 37
(メールを貼り付ける) 38 意訳) もうちょっとであなたのドメインでConnected Sheets 使えるようになるから待ってて(はぁと
さっそく試す 39
Connected Sheets の特徴
“ 41 Connected Sheetsとは ◂ 数百億行でもスプレッドシートの表として使用 可能 ◂ SQLが不要 ◂
スプレッドシート同様に式、グラフ、ピボットと して使用可能
Amazon RDS Amazon RDS Amazon RDS 構成 42 BigQuery New
Connected Sheets
実際の使用イメージ 43
44 メニュー→データ→データコネクタ→BigQueryに接続 と選択していく
45 プロジェクト→データセット→テーブル と選択していく
46 これだけで2.4億行のデータを参照可能
47
48 2.4億行のデータ元にピボットテーブルの作成 が可能
49
50 2.4億行の内最大で5万行のROWデータを取 得が可能
求めたてのはコレ!!!! 51
まとめ
まとめ ◂ ビッグデータを格納・集約するのも大事だが、取り 出しも容易にできることを考える必要がある ◂ Connected Sheetsを使えば今までの BigQuery連携とは違いSQLいらずなのでエンジ ニア以外も気軽に使うことができる ◂
BigQuery上のROWデータを使えばスプレッド シートの最大セル数をあっという間に上限になる ので用法用量を持って使う 53
54 Thanks! ご清聴ありがとうございました。 ◂ rito ◂ @chimame_rt