Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Microsoft ML.NET
Search
Cihan Yakar
February 19, 2019
Programming
0
510
Microsoft ML.NET
ML.NET 0.10 sürümü ile bir sınıflandırma örneği anlatılmıştır.
Cihan Yakar
February 19, 2019
Tweet
Share
More Decks by Cihan Yakar
See All by Cihan Yakar
Auto ML
cihanyakar
0
750
Microsoft Azure Machine Learning Studio
cihanyakar
0
1.3k
IntelliCode
cihanyakar
0
490
Microsoft ML.net ile Segmentasyon Çalışması
cihanyakar
0
530
Xamarin ❤ ML.net
cihanyakar
1
590
.NET CORE 2.2 & .NET CORE 3.
cihanyakar
0
680
Visual Studio 2019
cihanyakar
0
610
Geldiğim Nokta: XAMARIN & OYUN
cihanyakar
0
88
Visual Studio ve Takım Çalışması
cihanyakar
0
370
Other Decks in Programming
See All in Programming
今こそ知るべき耐量子計算機暗号(PQC)入門 / PQC: What You Need to Know Now
mackey0225
3
370
AI Agent Tool のためのバックエンドアーキテクチャを考える #encraft
izumin5210
6
1.8k
MUSUBIXとは
nahisaho
0
130
プロダクトオーナーから見たSOC2 _SOC2ゆるミートアップ#2
kekekenta
0
210
Spinner 軸ズレ現象を調べたらレンダリング深淵に飲まれた #レバテックMeetup
bengo4com
1
230
副作用をどこに置くか問題:オブジェクト指向で整理する設計判断ツリー
koxya
1
610
余白を設計しフロントエンド開発を 加速させる
tsukuha
7
2.1k
CSC307 Lecture 04
javiergs
PRO
0
660
Apache Iceberg V3 and migration to V3
tomtanaka
0
160
Grafana:建立系統全知視角的捷徑
blueswen
0
330
QAフローを最適化し、品質水準を満たしながらリリースまでの期間を最短化する #RSGT2026
shibayu36
2
4.4k
AI によるインシデント初動調査の自動化を行う AI インシデントコマンダーを作った話
azukiazusa1
1
720
Featured
See All Featured
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.4k
The Spectacular Lies of Maps
axbom
PRO
1
520
Redefining SEO in the New Era of Traffic Generation
szymonslowik
1
210
A designer walks into a library…
pauljervisheath
210
24k
How to Build an AI Search Optimization Roadmap - Criteria and Steps to Take #SEOIRL
aleyda
1
1.9k
Google's AI Overviews - The New Search
badams
0
900
Bioeconomy Workshop: Dr. Julius Ecuru, Opportunities for a Bioeconomy in West Africa
akademiya2063
PRO
1
54
Prompt Engineering for Job Search
mfonobong
0
160
A Modern Web Designer's Workflow
chriscoyier
698
190k
Pawsitive SEO: Lessons from My Dog (and Many Mistakes) on Thriving as a Consultant in the Age of AI
davidcarrasco
0
64
Imperfection Machines: The Place of Print at Facebook
scottboms
269
14k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
2
180
Transcript
MICROSOFT ML.NET Cihan YAKAR
[email protected]
MAKINE ÖĞRENMESI public static int PredictQuality(Wine wine) { return (int)(wine.CitricAcid
* 0.7 + wine.Alcohol * 0.2 + wine.CitricAcid * 0.5); }
MAKINE ÖĞRENMESI public static int PredictQuality(Wine wine) { return ***
ML *** }
MAKINE ÖĞRENMESI
SINIFLANDIRMA public static Hayvan HangiHayvan(Picture x) { return Hayvan.Kurbaga; }
DEMETLEME / KÜMELEME public static Hayvan[][] Demetle(Hayvan[] hayvanat, int num)
{ }
REGRESYON public static float Sicaklik(DateTime tarih) { return 45; }
İLK DEĞİL • Machine Learning Server 9.3, • Azure Machine
Learning Service, • Azure Machine Learning Studio, • Azure Databricks (Spark-based analytics platform), • SQL Server Machine Learning Services, • Azure Cognitive Service, • Azure Data Science Virtual Machine, • Windows ML.
ML.NET Load Data IDataView Transform Data ITransformer Choose Algorithm IEstimator
Train Model Evaluate Model PredictionEngine Deploy Model
DEMO – VERİYİ İNCELEYELİM
DEMO – VERİYİ İNCELEYELİM
DEMO – VERİYİ İNCELEYELİM
DEMO – VERİYİ İNCELEYELİM
DEMO – VERİYİ İNCELEYELİM 0 100 200 300 400 500
600 700 800 3 4 5 6 7 8 Kalitelerin Dağılımı
DEMO – VERİYİ İNCELEYELİM 0 100 200 300 400 500
600 700 800 3 4 5 6 7 8 Kalitelerin Dağılımı
DEMO – KODA GEÇELİM
TEŞEKKÜRLER WWW.TEKNOLOT.COM