Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Microsoft ML.NET
Search
Cihan Yakar
February 19, 2019
Programming
0
470
Microsoft ML.NET
ML.NET 0.10 sürümü ile bir sınıflandırma örneği anlatılmıştır.
Cihan Yakar
February 19, 2019
Tweet
Share
More Decks by Cihan Yakar
See All by Cihan Yakar
Auto ML
cihanyakar
0
700
Microsoft Azure Machine Learning Studio
cihanyakar
0
1.2k
IntelliCode
cihanyakar
0
450
Microsoft ML.net ile Segmentasyon Çalışması
cihanyakar
0
490
Xamarin ❤ ML.net
cihanyakar
1
550
.NET CORE 2.2 & .NET CORE 3.
cihanyakar
0
640
Visual Studio 2019
cihanyakar
0
570
Geldiğim Nokta: XAMARIN & OYUN
cihanyakar
0
82
Visual Studio ve Takım Çalışması
cihanyakar
0
350
Other Decks in Programming
See All in Programming
Road to Ruby for A Linguistics Nerd
hayat01sh1da
PRO
0
340
note の Elasticsearch 更新系を支える技術
tchov
9
3.6k
Носок на сок
bo0om
0
1.3k
iOSアプリで測る!名古屋駅までの 方向と距離
ryunakayama
0
160
大LLM時代にこの先生きのこるには-ITエンジニア編
fumiyakume
8
3.4k
“技術カンファレンスで何か変わる?” ──RubyKaigi後の自分とチームを振り返る
ssagara00
0
120
読書シェア会 vol.4 『ダイナミックリチーミング 第2版』
kotaro666
0
120
KANNA Android の技術的課題と取り組み
watabee
1
560
インプロセスQAにおいて大事にしていること / In-process QA Meetup
medley
0
170
OpenTelemetry + LLM = OpenLLMetry!?
yunosukey
1
160
実践Webフロントパフォーマンスチューニング
cp20
45
10k
データベースの技術選定を突き詰める ~複数事例から考える最適なデータベースの選び方~
nnaka2992
3
2.1k
Featured
See All Featured
Designing for humans not robots
tammielis
253
25k
Faster Mobile Websites
deanohume
307
31k
How to Think Like a Performance Engineer
csswizardry
23
1.6k
YesSQL, Process and Tooling at Scale
rocio
172
14k
How GitHub (no longer) Works
holman
314
140k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
32
5.6k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Designing Experiences People Love
moore
142
24k
How to Ace a Technical Interview
jacobian
276
23k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Optimising Largest Contentful Paint
csswizardry
37
3.2k
Mobile First: as difficult as doing things right
swwweet
223
9.6k
Transcript
MICROSOFT ML.NET Cihan YAKAR
[email protected]
MAKINE ÖĞRENMESI public static int PredictQuality(Wine wine) { return (int)(wine.CitricAcid
* 0.7 + wine.Alcohol * 0.2 + wine.CitricAcid * 0.5); }
MAKINE ÖĞRENMESI public static int PredictQuality(Wine wine) { return ***
ML *** }
MAKINE ÖĞRENMESI
SINIFLANDIRMA public static Hayvan HangiHayvan(Picture x) { return Hayvan.Kurbaga; }
DEMETLEME / KÜMELEME public static Hayvan[][] Demetle(Hayvan[] hayvanat, int num)
{ }
REGRESYON public static float Sicaklik(DateTime tarih) { return 45; }
İLK DEĞİL • Machine Learning Server 9.3, • Azure Machine
Learning Service, • Azure Machine Learning Studio, • Azure Databricks (Spark-based analytics platform), • SQL Server Machine Learning Services, • Azure Cognitive Service, • Azure Data Science Virtual Machine, • Windows ML.
ML.NET Load Data IDataView Transform Data ITransformer Choose Algorithm IEstimator
Train Model Evaluate Model PredictionEngine Deploy Model
DEMO – VERİYİ İNCELEYELİM
DEMO – VERİYİ İNCELEYELİM
DEMO – VERİYİ İNCELEYELİM
DEMO – VERİYİ İNCELEYELİM
DEMO – VERİYİ İNCELEYELİM 0 100 200 300 400 500
600 700 800 3 4 5 6 7 8 Kalitelerin Dağılımı
DEMO – VERİYİ İNCELEYELİM 0 100 200 300 400 500
600 700 800 3 4 5 6 7 8 Kalitelerin Dağılımı
DEMO – KODA GEÇELİM
TEŞEKKÜRLER WWW.TEKNOLOT.COM