Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Microsoft ML.NET
Search
Cihan Yakar
February 19, 2019
Programming
0
460
Microsoft ML.NET
ML.NET 0.10 sürümü ile bir sınıflandırma örneği anlatılmıştır.
Cihan Yakar
February 19, 2019
Tweet
Share
More Decks by Cihan Yakar
See All by Cihan Yakar
Auto ML
cihanyakar
0
680
Microsoft Azure Machine Learning Studio
cihanyakar
0
1.1k
IntelliCode
cihanyakar
0
450
Microsoft ML.net ile Segmentasyon Çalışması
cihanyakar
0
480
Xamarin ❤ ML.net
cihanyakar
1
550
.NET CORE 2.2 & .NET CORE 3.
cihanyakar
0
630
Visual Studio 2019
cihanyakar
0
560
Geldiğim Nokta: XAMARIN & OYUN
cihanyakar
0
77
Visual Studio ve Takım Çalışması
cihanyakar
0
340
Other Decks in Programming
See All in Programming
ML.NETで始める機械学習
ymd65536
0
240
Honoとフロントエンドの 型安全性について
yodaka
7
1.5k
PRレビューのお供にDanger
stoticdev
1
240
ナレッジイネイブリングにAIを活用してみる ゆるSRE勉強会 #9
nealle
0
160
pylint custom ruleで始めるレビュー自動化
shogoujiie
0
160
PHPのバージョンアップ時にも役立ったAST
matsuo_atsushi
0
230
ソフトウェアエンジニアの成長
masuda220
PRO
12
2.1k
Django NinjaによるAPI開発の効率化とリプレースの実践
kashewnuts
1
290
The Clean ArchitectureがWebフロントエンドでしっくりこないのは何故か / Why The Clean Architecture does not fit with Web Frontend
twada
PRO
39
12k
SwiftUI Viewの責務分離
elmetal
PRO
2
280
[JAWS DAYS 2025] 最近の DB の競合解決の仕組みが分かった気になってみた
maroon1st
0
150
推しメソッドsource_locationのしくみを探る - はじめてRubyのコードを読んでみた
nobu09
2
340
Featured
See All Featured
Designing for Performance
lara
605
68k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
11
1.3k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.3k
Become a Pro
speakerdeck
PRO
26
5.2k
Being A Developer After 40
akosma
89
590k
GraphQLの誤解/rethinking-graphql
sonatard
69
10k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
27
1.6k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
330
21k
How to Ace a Technical Interview
jacobian
276
23k
Building Your Own Lightsaber
phodgson
104
6.2k
Fontdeck: Realign not Redesign
paulrobertlloyd
83
5.4k
Transcript
MICROSOFT ML.NET Cihan YAKAR cihanyakar@gmail.com
MAKINE ÖĞRENMESI public static int PredictQuality(Wine wine) { return (int)(wine.CitricAcid
* 0.7 + wine.Alcohol * 0.2 + wine.CitricAcid * 0.5); }
MAKINE ÖĞRENMESI public static int PredictQuality(Wine wine) { return ***
ML *** }
MAKINE ÖĞRENMESI
SINIFLANDIRMA public static Hayvan HangiHayvan(Picture x) { return Hayvan.Kurbaga; }
DEMETLEME / KÜMELEME public static Hayvan[][] Demetle(Hayvan[] hayvanat, int num)
{ }
REGRESYON public static float Sicaklik(DateTime tarih) { return 45; }
İLK DEĞİL • Machine Learning Server 9.3, • Azure Machine
Learning Service, • Azure Machine Learning Studio, • Azure Databricks (Spark-based analytics platform), • SQL Server Machine Learning Services, • Azure Cognitive Service, • Azure Data Science Virtual Machine, • Windows ML.
ML.NET Load Data IDataView Transform Data ITransformer Choose Algorithm IEstimator
Train Model Evaluate Model PredictionEngine Deploy Model
DEMO – VERİYİ İNCELEYELİM
DEMO – VERİYİ İNCELEYELİM
DEMO – VERİYİ İNCELEYELİM
DEMO – VERİYİ İNCELEYELİM
DEMO – VERİYİ İNCELEYELİM 0 100 200 300 400 500
600 700 800 3 4 5 6 7 8 Kalitelerin Dağılımı
DEMO – VERİYİ İNCELEYELİM 0 100 200 300 400 500
600 700 800 3 4 5 6 7 8 Kalitelerin Dağılımı
DEMO – KODA GEÇELİM
TEŞEKKÜRLER WWW.TEKNOLOT.COM