Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Redisconf 2018: Probabilistic Data Structures
Search
cnu
April 25, 2018
Programming
1
960
Redisconf 2018: Probabilistic Data Structures
Real Time Log Analysis using Probabilistic Data Structures in Redis. Presented at Redisconf 2018.
cnu
April 25, 2018
Tweet
Share
More Decks by cnu
See All by cnu
The Rocky Road from Monolithic to Microservices Architecture
cnu
0
1k
Probabilistic Data Structures
cnu
0
620
AWS Lambda - Pycon India 2016
cnu
0
500
ZeroMQ - PyCon India 2013
cnu
2
1.5k
Other Decks in Programming
See All in Programming
今ならAmazon ECSのサービス間通信をどう選ぶか / Selection of ECS Interservice Communication 2025
tkikuc
19
3.5k
Google Agent Development Kit でLINE Botを作ってみた
ymd65536
2
160
イベントストーミング図からコードへの変換手順 / Procedure for Converting Event Storming Diagrams to Code
nrslib
1
340
来たるべき 8.0 に備えて React 19 新機能と React Router 固有機能の取捨選択とすり合わせを考える
oukayuka
2
850
git worktree × Claude Code × MCP ~生成AI時代の並列開発フロー~
hisuzuya
1
460
Enterprise Web App. Development (2): Version Control Tool Training Ver. 5.1
knakagawa
1
120
LT 2025-06-30: プロダクトエンジニアの役割
yamamotok
0
340
ニーリーにおけるプロダクトエンジニア
nealle
0
360
ASP.NETアプリケーションのモダナイズ インフラ編
tomokusaba
1
410
WindowInsetsだってテストしたい
ryunen344
1
190
GraphRAGの仕組みまるわかり
tosuri13
7
480
Elixir で IoT 開発、 Nerves なら簡単にできる!?
pojiro
1
150
Featured
See All Featured
Docker and Python
trallard
44
3.4k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
26k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
48
5.4k
The Invisible Side of Design
smashingmag
299
51k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
657
60k
Why Our Code Smells
bkeepers
PRO
337
57k
How to Think Like a Performance Engineer
csswizardry
24
1.7k
Building Adaptive Systems
keathley
43
2.6k
Automating Front-end Workflow
addyosmani
1370
200k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.5k
Designing Experiences People Love
moore
142
24k
Transcript
Probabilistic Data Structures in Redis Srinivasan Rangarajan @cnu
Srinivasan Rangarajan •
[email protected]
• @cnu • https://cnu.name
Log Analysis
User Events Kinesis Firehose ELK
Sample Event Data { "ip": "123.123.123.123", "client_id": 232, "user_id": "35827",
"email": "
[email protected]
", "product_id": "ABC-12345", "image_id": 3, "action": "pageview", "datetime": "2017-06-29T12:42:53Z", }
Challenges • 100s of Millions of events processed every day
• Peak of ~10 Million events in an hour • Needed Real Time processing • Low memory/storage requirements
None
User Events Kinesis Firehose ELK AWS Lambda Redis
Cost Accuracy Scale
Probabilistic Data Structures
xkcd/1132
Loading Modules • ./redis-server --loadmodule /path/to/module.so • redis.conf loadmodule /path/to/module.so
• MODULE LOAD /path/to/module.so
Execute custom commands >>> import redis >>> r = redis.Redis()
>>> out = r.execute_command('CMD param1 param2')
Data Structures • HyperLogLog • TopK • CountMinSketch • Bloom
Filters
HyperLogLog Count the Cardinality of a Set
Count Unique Visitors/hour >>> r.pfadd('users:2017083120', 123, 456, 789) 1 >>>
r.pfcount('users:2017083120') 3 >>> r.pfadd('users:2017083120', 456) 0
Merge Hourly into Daily >>> r.pfadd('users:2017083121', 121, 454, 787) 1
>>> r.pfmerge('users:20170831', 'users:2017083120', 'users:2017083121') True >>> r.pfcount('users:20170831’) 6
Links • https://redis.io/commands#hyperloglog • http://antirez.com/news/75
TopK Get top K elements in a set
Top K IP Addresses >>> r.execute_command('TOPK.ADD ip:20170831 3 123.45.67.89') >>>
r.execute_command('TOPK.ADD ip:20170831 3 123.45.67.90') >>> r.execute_command('TOPK.ADD ip:20170831 3 123.45.67.91') 1L >>> r.execute_command('TOPK.ADD ip:20170831 3 123.45.67.92') -1L
Top K IP Addresses >>> r.zrange('ip:20170831’, 0, -1, withscores=True) [('TOPK:1.0.1:1.0:\xff\xff\xff\xff\xff\xff\xff\xff\x04\x00\x0
0\x00\x00\x00\x00\x00', 1.0), ('123.45.67.89', 1.0), ('123.45.67.90', 1.0), ('123.45.67.92', 2.0)]
Links • https://github.com/RedisLabsModules/topk
CountMinSketch Count the frequency of items
1 2 3 4 h1 0 0 0 0 h2
0 0 0 0 h3 0 0 0 0
1 2 3 4 h1 1 0 0 0 h2
0 1 0 0 h3 0 0 1 0 h1(s1) = 1; h2(s1) = 2; h3(s1) = 3
1 2 3 4 h1 1 0 0 1 h2
0 1 0 1 h3 0 0 1 1 h1(s2) = 4; h2(s2) = 4; h3(s2) = 4
1 2 3 4 h1 2 1 1 1 h2
0 1 0 1 h3 0 0 1 1 h1(s3) = 1; h2(s3) = 1; h3(s3) = 1
User Pageview counter >>> r.execute_command('CMS.INCRBY u:pv:20170831 123 1 456 3
789 2 234 1 567 1') 'OK' >>> r.execute_command('CMS.QUERY u:pv:20170831 123 456 789 234 567') [1L, 3L, 2L, 1L, 1L]
Merge Counters >>> r.execute_command('CMS.MERGE u:pv:201708 3 u:pv:20170829 u:pv:20170830 u:pv:20170831') 'OK'
Links • https://github.com/RedisLabsModules/countminsketch • https://redislabs.com/blog/count-min-sketch-the-art-and-science- of-estimating-stuff/
Bloom Filters Test Membership in a Set
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 Empty Bit Array
0 0 1 0 0 1 0 0 1 0
0 0 0 0 0 0 h1(item1) = 2; h2(item1) = 5; h3(item1) = 8 Insert Item 1
0 0 1 0 0 1 0 1 1 0
1 0 0 0 0 0 h1(item2) = 7; h2(item2) = 8; h3(item2) = 10 Insert Item 2
0 0 1 0 0 1 0 1 1 0
1 0 0 0 0 0 h1(item3) = 2; h2(item3) = 11; h3(item3) = 0 Check Item3
0 0 1 0 0 1 0 1 1 0
1 0 0 0 0 0 h1(item4) = 10; h2(item4) = 8; h3(item4) = 7 Check Item4
Bloom Filter returns What it means False Definitely not in
the set True Maybe in the set
Check User Session >>> r.execute_command('BF.MADD u:sess:20170831 123 456 789') [1L,
1L, 1L] >>> r.execute_command('BF.EXISTS u:sess:20170831 456') 1L >>> r.execute_command('BF.EXISTS u:sess:20170831 234') 0L
Links • https://github.com/RedisLabsModules/rebloom • https://redislabs.com/blog/rebloom-bloom-filter-datatype-redis/ • https://github.com/kristoff-it/redis-cuckoofilter - Better than
bloom filters
“An 80% solution today is much better than an 100%
solution tomorrow.”
Thank You https://cnu.name/talks/redisconf-2018/