Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Redisconf 2018: Probabilistic Data Structures
Search
cnu
April 25, 2018
Programming
1
980
Redisconf 2018: Probabilistic Data Structures
Real Time Log Analysis using Probabilistic Data Structures in Redis. Presented at Redisconf 2018.
cnu
April 25, 2018
Tweet
Share
More Decks by cnu
See All by cnu
The Rocky Road from Monolithic to Microservices Architecture
cnu
0
1.1k
Probabilistic Data Structures
cnu
0
640
AWS Lambda - Pycon India 2016
cnu
0
510
ZeroMQ - PyCon India 2013
cnu
2
1.5k
Other Decks in Programming
See All in Programming
FindyにおけるTakumi活用と脆弱性管理のこれから
rvirus0817
0
480
Deep Dive into Kotlin Flow
jmatsu
1
260
サーバーサイドのビルド時間87倍高速化
plaidtech
PRO
0
720
Protocol Buffersの型を超えて拡張性を得る / Beyond Protocol Buffers Types Achieving Extensibility
linyows
0
110
ユーザーも開発者も悩ませない TV アプリ開発 ~Compose の内部実装から学ぶフォーカス制御~
taked137
0
120
オープンセミナー2025@広島「君はどこで動かすか?」アンケート結果
satoshi256kbyte
0
260
@Environment(\.keyPath)那么好我不允许你们不知道! / atEnvironment keyPath is so good and you should know it!
lovee
0
110
ソフトウェアテスト徹底指南書の紹介
goyoki
1
150
Oracle Database Technology Night 92 Database Connection control FAN-AC
oracle4engineer
PRO
1
440
JSONataを使ってみよう Step Functionsが楽しくなる実践テクニック #devio2025
dafujii
1
510
Processing Gem ベースの、2D レトロゲームエンジンの開発
tokujiros
2
120
AIでLINEスタンプを作ってみた
eycjur
1
230
Featured
See All Featured
Optimizing for Happiness
mojombo
379
70k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.8k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
840
Code Reviewing Like a Champion
maltzj
525
40k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
Producing Creativity
orderedlist
PRO
347
40k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Documentation Writing (for coders)
carmenintech
74
5k
Transcript
Probabilistic Data Structures in Redis Srinivasan Rangarajan @cnu
Srinivasan Rangarajan •
[email protected]
• @cnu • https://cnu.name
Log Analysis
User Events Kinesis Firehose ELK
Sample Event Data { "ip": "123.123.123.123", "client_id": 232, "user_id": "35827",
"email": "
[email protected]
", "product_id": "ABC-12345", "image_id": 3, "action": "pageview", "datetime": "2017-06-29T12:42:53Z", }
Challenges • 100s of Millions of events processed every day
• Peak of ~10 Million events in an hour • Needed Real Time processing • Low memory/storage requirements
None
User Events Kinesis Firehose ELK AWS Lambda Redis
Cost Accuracy Scale
Probabilistic Data Structures
xkcd/1132
Loading Modules • ./redis-server --loadmodule /path/to/module.so • redis.conf loadmodule /path/to/module.so
• MODULE LOAD /path/to/module.so
Execute custom commands >>> import redis >>> r = redis.Redis()
>>> out = r.execute_command('CMD param1 param2')
Data Structures • HyperLogLog • TopK • CountMinSketch • Bloom
Filters
HyperLogLog Count the Cardinality of a Set
Count Unique Visitors/hour >>> r.pfadd('users:2017083120', 123, 456, 789) 1 >>>
r.pfcount('users:2017083120') 3 >>> r.pfadd('users:2017083120', 456) 0
Merge Hourly into Daily >>> r.pfadd('users:2017083121', 121, 454, 787) 1
>>> r.pfmerge('users:20170831', 'users:2017083120', 'users:2017083121') True >>> r.pfcount('users:20170831’) 6
Links • https://redis.io/commands#hyperloglog • http://antirez.com/news/75
TopK Get top K elements in a set
Top K IP Addresses >>> r.execute_command('TOPK.ADD ip:20170831 3 123.45.67.89') >>>
r.execute_command('TOPK.ADD ip:20170831 3 123.45.67.90') >>> r.execute_command('TOPK.ADD ip:20170831 3 123.45.67.91') 1L >>> r.execute_command('TOPK.ADD ip:20170831 3 123.45.67.92') -1L
Top K IP Addresses >>> r.zrange('ip:20170831’, 0, -1, withscores=True) [('TOPK:1.0.1:1.0:\xff\xff\xff\xff\xff\xff\xff\xff\x04\x00\x0
0\x00\x00\x00\x00\x00', 1.0), ('123.45.67.89', 1.0), ('123.45.67.90', 1.0), ('123.45.67.92', 2.0)]
Links • https://github.com/RedisLabsModules/topk
CountMinSketch Count the frequency of items
1 2 3 4 h1 0 0 0 0 h2
0 0 0 0 h3 0 0 0 0
1 2 3 4 h1 1 0 0 0 h2
0 1 0 0 h3 0 0 1 0 h1(s1) = 1; h2(s1) = 2; h3(s1) = 3
1 2 3 4 h1 1 0 0 1 h2
0 1 0 1 h3 0 0 1 1 h1(s2) = 4; h2(s2) = 4; h3(s2) = 4
1 2 3 4 h1 2 1 1 1 h2
0 1 0 1 h3 0 0 1 1 h1(s3) = 1; h2(s3) = 1; h3(s3) = 1
User Pageview counter >>> r.execute_command('CMS.INCRBY u:pv:20170831 123 1 456 3
789 2 234 1 567 1') 'OK' >>> r.execute_command('CMS.QUERY u:pv:20170831 123 456 789 234 567') [1L, 3L, 2L, 1L, 1L]
Merge Counters >>> r.execute_command('CMS.MERGE u:pv:201708 3 u:pv:20170829 u:pv:20170830 u:pv:20170831') 'OK'
Links • https://github.com/RedisLabsModules/countminsketch • https://redislabs.com/blog/count-min-sketch-the-art-and-science- of-estimating-stuff/
Bloom Filters Test Membership in a Set
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 Empty Bit Array
0 0 1 0 0 1 0 0 1 0
0 0 0 0 0 0 h1(item1) = 2; h2(item1) = 5; h3(item1) = 8 Insert Item 1
0 0 1 0 0 1 0 1 1 0
1 0 0 0 0 0 h1(item2) = 7; h2(item2) = 8; h3(item2) = 10 Insert Item 2
0 0 1 0 0 1 0 1 1 0
1 0 0 0 0 0 h1(item3) = 2; h2(item3) = 11; h3(item3) = 0 Check Item3
0 0 1 0 0 1 0 1 1 0
1 0 0 0 0 0 h1(item4) = 10; h2(item4) = 8; h3(item4) = 7 Check Item4
Bloom Filter returns What it means False Definitely not in
the set True Maybe in the set
Check User Session >>> r.execute_command('BF.MADD u:sess:20170831 123 456 789') [1L,
1L, 1L] >>> r.execute_command('BF.EXISTS u:sess:20170831 456') 1L >>> r.execute_command('BF.EXISTS u:sess:20170831 234') 0L
Links • https://github.com/RedisLabsModules/rebloom • https://redislabs.com/blog/rebloom-bloom-filter-datatype-redis/ • https://github.com/kristoff-it/redis-cuckoofilter - Better than
bloom filters
“An 80% solution today is much better than an 100%
solution tomorrow.”
Thank You https://cnu.name/talks/redisconf-2018/