$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Redisconf 2018: Probabilistic Data Structures
Search
cnu
April 25, 2018
Programming
1
1k
Redisconf 2018: Probabilistic Data Structures
Real Time Log Analysis using Probabilistic Data Structures in Redis. Presented at Redisconf 2018.
cnu
April 25, 2018
Tweet
Share
More Decks by cnu
See All by cnu
The Rocky Road from Monolithic to Microservices Architecture
cnu
0
1.1k
Probabilistic Data Structures
cnu
0
660
AWS Lambda - Pycon India 2016
cnu
0
530
ZeroMQ - PyCon India 2013
cnu
2
1.6k
Other Decks in Programming
See All in Programming
【CA.ai #3】ワークフローから見直すAIエージェント — 必要な場面と“選ばない”判断
satoaoaka
0
240
WebRTC、 綺麗に見るか滑らかに見るか
sublimer
1
160
20251127_ぼっちのための懇親会対策会議
kokamoto01_metaps
2
420
認証・認可の基本を学ぼう後編
kouyuume
0
180
TypeScriptで設計する 堅牢さとUXを両立した非同期ワークフローの実現
moeka__c
6
3k
俺流レスポンシブコーディング 2025
tak_dcxi
14
8.5k
Integrating WordPress and Symfony
alexandresalome
0
150
STYLE
koic
0
160
ハイパーメディア駆動アプリケーションとIslandアーキテクチャ: htmxによるWebアプリケーション開発と動的UIの局所的適用
nowaki28
0
400
手軽に積ん読を増やすには?/読みたい本と付き合うには?
o0h
PRO
1
170
モデル駆動設計をやってみようワークショップ開催報告(Modeling Forum2025) / model driven design workshop report
haru860
0
260
tparseでgo testの出力を見やすくする
utgwkk
1
190
Featured
See All Featured
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.7k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.2k
Bash Introduction
62gerente
615
210k
KATA
mclloyd
PRO
32
15k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
How GitHub (no longer) Works
holman
316
140k
Context Engineering - Making Every Token Count
addyosmani
9
500
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
Docker and Python
trallard
47
3.7k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.2k
Testing 201, or: Great Expectations
jmmastey
46
7.8k
Transcript
Probabilistic Data Structures in Redis Srinivasan Rangarajan @cnu
Srinivasan Rangarajan •
[email protected]
• @cnu • https://cnu.name
Log Analysis
User Events Kinesis Firehose ELK
Sample Event Data { "ip": "123.123.123.123", "client_id": 232, "user_id": "35827",
"email": "
[email protected]
", "product_id": "ABC-12345", "image_id": 3, "action": "pageview", "datetime": "2017-06-29T12:42:53Z", }
Challenges • 100s of Millions of events processed every day
• Peak of ~10 Million events in an hour • Needed Real Time processing • Low memory/storage requirements
None
User Events Kinesis Firehose ELK AWS Lambda Redis
Cost Accuracy Scale
Probabilistic Data Structures
xkcd/1132
Loading Modules • ./redis-server --loadmodule /path/to/module.so • redis.conf loadmodule /path/to/module.so
• MODULE LOAD /path/to/module.so
Execute custom commands >>> import redis >>> r = redis.Redis()
>>> out = r.execute_command('CMD param1 param2')
Data Structures • HyperLogLog • TopK • CountMinSketch • Bloom
Filters
HyperLogLog Count the Cardinality of a Set
Count Unique Visitors/hour >>> r.pfadd('users:2017083120', 123, 456, 789) 1 >>>
r.pfcount('users:2017083120') 3 >>> r.pfadd('users:2017083120', 456) 0
Merge Hourly into Daily >>> r.pfadd('users:2017083121', 121, 454, 787) 1
>>> r.pfmerge('users:20170831', 'users:2017083120', 'users:2017083121') True >>> r.pfcount('users:20170831’) 6
Links • https://redis.io/commands#hyperloglog • http://antirez.com/news/75
TopK Get top K elements in a set
Top K IP Addresses >>> r.execute_command('TOPK.ADD ip:20170831 3 123.45.67.89') >>>
r.execute_command('TOPK.ADD ip:20170831 3 123.45.67.90') >>> r.execute_command('TOPK.ADD ip:20170831 3 123.45.67.91') 1L >>> r.execute_command('TOPK.ADD ip:20170831 3 123.45.67.92') -1L
Top K IP Addresses >>> r.zrange('ip:20170831’, 0, -1, withscores=True) [('TOPK:1.0.1:1.0:\xff\xff\xff\xff\xff\xff\xff\xff\x04\x00\x0
0\x00\x00\x00\x00\x00', 1.0), ('123.45.67.89', 1.0), ('123.45.67.90', 1.0), ('123.45.67.92', 2.0)]
Links • https://github.com/RedisLabsModules/topk
CountMinSketch Count the frequency of items
1 2 3 4 h1 0 0 0 0 h2
0 0 0 0 h3 0 0 0 0
1 2 3 4 h1 1 0 0 0 h2
0 1 0 0 h3 0 0 1 0 h1(s1) = 1; h2(s1) = 2; h3(s1) = 3
1 2 3 4 h1 1 0 0 1 h2
0 1 0 1 h3 0 0 1 1 h1(s2) = 4; h2(s2) = 4; h3(s2) = 4
1 2 3 4 h1 2 1 1 1 h2
0 1 0 1 h3 0 0 1 1 h1(s3) = 1; h2(s3) = 1; h3(s3) = 1
User Pageview counter >>> r.execute_command('CMS.INCRBY u:pv:20170831 123 1 456 3
789 2 234 1 567 1') 'OK' >>> r.execute_command('CMS.QUERY u:pv:20170831 123 456 789 234 567') [1L, 3L, 2L, 1L, 1L]
Merge Counters >>> r.execute_command('CMS.MERGE u:pv:201708 3 u:pv:20170829 u:pv:20170830 u:pv:20170831') 'OK'
Links • https://github.com/RedisLabsModules/countminsketch • https://redislabs.com/blog/count-min-sketch-the-art-and-science- of-estimating-stuff/
Bloom Filters Test Membership in a Set
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 Empty Bit Array
0 0 1 0 0 1 0 0 1 0
0 0 0 0 0 0 h1(item1) = 2; h2(item1) = 5; h3(item1) = 8 Insert Item 1
0 0 1 0 0 1 0 1 1 0
1 0 0 0 0 0 h1(item2) = 7; h2(item2) = 8; h3(item2) = 10 Insert Item 2
0 0 1 0 0 1 0 1 1 0
1 0 0 0 0 0 h1(item3) = 2; h2(item3) = 11; h3(item3) = 0 Check Item3
0 0 1 0 0 1 0 1 1 0
1 0 0 0 0 0 h1(item4) = 10; h2(item4) = 8; h3(item4) = 7 Check Item4
Bloom Filter returns What it means False Definitely not in
the set True Maybe in the set
Check User Session >>> r.execute_command('BF.MADD u:sess:20170831 123 456 789') [1L,
1L, 1L] >>> r.execute_command('BF.EXISTS u:sess:20170831 456') 1L >>> r.execute_command('BF.EXISTS u:sess:20170831 234') 0L
Links • https://github.com/RedisLabsModules/rebloom • https://redislabs.com/blog/rebloom-bloom-filter-datatype-redis/ • https://github.com/kristoff-it/redis-cuckoofilter - Better than
bloom filters
“An 80% solution today is much better than an 100%
solution tomorrow.”
Thank You https://cnu.name/talks/redisconf-2018/