Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The Rocky Road from Monolithic to Microservice...
Search
cnu
November 25, 2017
Programming
0
1k
The Rocky Road from Monolithic to Microservices Architecture
The explanation of our Microservices architecture and the lessons we learnt from it.
cnu
November 25, 2017
Tweet
Share
More Decks by cnu
See All by cnu
Redisconf 2018: Probabilistic Data Structures
cnu
1
970
Probabilistic Data Structures
cnu
0
630
AWS Lambda - Pycon India 2016
cnu
0
500
ZeroMQ - PyCon India 2013
cnu
2
1.5k
Other Decks in Programming
See All in Programming
チームで開発し事業を加速するための"良い"設計の考え方 @ サポーターズCoLab 2025-07-08
agatan
1
420
20250704_教育事業におけるアジャイルなデータ基盤構築
hanon52_
5
790
ISUCON研修おかわり会 講義スライド
arfes0e2b3c
1
450
「Cursor/Devin全社導入の理想と現実」のその後
saitoryc
0
820
Code as Context 〜 1にコードで 2にリンタ 34がなくて 5にルール? 〜
yodakeisuke
0
130
チームのテスト力を総合的に鍛えて品質、スピード、レジリエンスを共立させる/Testing approach that improves quality, speed, and resilience
goyoki
5
880
AIエージェントはこう育てる - GitHub Copilot Agentとチームの共進化サイクル
koboriakira
0
590
iOS 26にアップデートすると実機でのHot Reloadができない?
umigishiaoi
0
130
Blazing Fast UI Development with Compose Hot Reload (droidcon New York 2025)
zsmb
1
290
レベル1の開発生産性向上に取り組む − 日々の作業の効率化・自動化を通じた改善活動
kesoji
0
220
脱Riverpod?fqueryで考える、TanStack Queryライクなアーキテクチャの可能性
ostk0069
0
140
ruby.wasmで多人数リアルタイム通信ゲームを作ろう
lnit
3
480
Featured
See All Featured
How to Ace a Technical Interview
jacobian
278
23k
A Tale of Four Properties
chriscoyier
160
23k
Documentation Writing (for coders)
carmenintech
72
4.9k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
48
2.9k
Git: the NoSQL Database
bkeepers
PRO
430
65k
Docker and Python
trallard
44
3.5k
KATA
mclloyd
30
14k
Being A Developer After 40
akosma
90
590k
Writing Fast Ruby
sferik
628
62k
Building Applications with DynamoDB
mza
95
6.5k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
46
9.6k
Transcript
THE ROCKY ROAD FROM MONOLITHIC TO MICROSERVICES ARCHITECTURE
THE ROCKY ROAD FROM MONOLITHIC TO MICROSERVICES ARCHITECTURE
SRINIVASAN RANGARAJAN Head of Product Engineering
SRINIVASAN RANGARAJAN https://cnu.name Twitter: @cnu Github: @cnu
RETAIL AUTOMATION PRODUCT
Catalog & User Events Processing Recommendation
MONOLITHIC ARCHITECTURE
MONOLITHIC ARCHITECTURE Image Processing API Image Searcher File Storage
MINIMUM TWO SERVERS BEHIND ELB Load Balancer
CLOUD VS BARE METAL
EXPENSIVE
NOT REALTIME
NOT PERSONALIZABLE
API Data Store Ingestion Image Processing Image Searcher User Event
Personalization Engine
GOTHAM
API Data Store Ingestion Image Processing Image Searcher User Event
Personalization Engine
JOKER • Convert client’s catalog into one common MAD Format
• Normalization of fields and metadata • Can process batch and streaming data • Major cause of chaos in the system
GORDON • Routes the product metadata to the right micro
services • Is it a new product? or update to an existing product? • Streaming data from AWS SQS
WONDER WOMAN • Not a microservice, But a tool used
to generate rules for the catalog • Rules are send to the Image Processing microservice • Works on Samples of data and not entire dataset
WATCHTOWER • Central Source of Truth for all metadata •
Backed by an RDBMS Database (Postgresql) • Input via SQS and REST API • Output via REST API
INGESTION Gordon Joker Joker Joker Wonder Woman Watchtower Next Stage
API Data Store Ingestion Image Processing Image Searcher User Event
Personalization Engine
NIGHTWING • Computer Vision and Deep Learning Models • Convert
Image to high dimensional vectors • Tag image with visual attributes • Computer Intensive
API Data Store Ingestion Image Processing Image Searcher User Event
Personalization Engine
BATMAN • Custom very fast Vector Indexer and Search Engine
• Stores everything in memory • Two sub-parts: Indexer and Searcher • Store binary information about image in DynamoDB
API Data Store Ingestion Image Processing Image Searcher User Event
Personalization Engine
SUPERMAN • User behaviour based recommendation • Multiple products like
Collaborative filtering, Cross Product recommendation • Records every user event data and stores in a data warehouse
TWO FACE • Individual User level Personalization • Shows a
different “face” to each user • Dynamic and realtime
API Data Store Ingestion Image Processing Image Searcher User Event
Personalization Engine
FLASH • Very fast data structure storage - redis instance
• User session level history, Product Availability, etc. • Fast access, but non- expirable
GCPD • “Global Cache for Products Digested” • Rough first
level of cache for the results
API Data Store Ingestion Image Processing Image Searcher User Event
Personalization Engine
ROBIN • API Gateway for all our products • Combines
data from other micro services like Batman, Two Face, Watchtower, Superman, etc and returns JSON Response
API Data Store Ingestion Image Processing Image Searcher User Event
Personalization Engine Joker, Gordon, Wonder Woman Nightwing Batman Robin Watchtower, GCPD, Flash Superman, Two Face
LESSONS WE LEARNT
START WITH A MONOLITH. CHIP OFF PIECES AND BUILD THE
MICROSERVICES. Lesson 0
–Melvin Conway “… organizations which design systems ... are constrained
to produce designs which are copies of the communication structures of these organizations."
DEPLOY HETEROGENOUS MICROSERVICES IN A SINGLE SERVER Lesson 1
Compute Optimized Server Memory Optimized Server Nightwing Batman Robin Robin
Robin Joker Joker Joker Gordon Watch tower Watch tower Joker
IMMUTABLE MICROSERVICES Lesson 2
Constable Inspector Assistant Commissioner Commissioner
ASYNCHRONOUS IS BETTER THAN SYNCHRONOUS Lesson 3
None
NOT ALL MICROSERVICES NEED TO BE SERVERS Lesson 4
ADD REQUEST ID OR TRANSACTION ID TO DEBUG EASILY Lesson
5
GIVE A CHARACTER TO YOUR MICROSERVICES Lesson 6
None
THANK YOU
http://cnu.name/talks/ @cnu