Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
はてなインターンのつくりかた
Search
KASUYA, Daisuke
December 18, 2016
Education
0
2k
はてなインターンのつくりかた
合同勉強会 in 大都会岡山 winter 2016の登壇資料
KASUYA, Daisuke
December 18, 2016
Tweet
Share
More Decks by KASUYA, Daisuke
See All by KASUYA, Daisuke
エンジニアリングマネージャーの成長の道筋とキャリア / Developers Summit 2025 KANSAI
daiksy
7
4.9k
はてなの開発20年史と DevOpsの歩み / DevOpsDays Tokyo 2025 Keynote
daiksy
6
3.6k
わたしがEMとして入社した「最初の100日」の過ごし方 / EMConfJp2025
daiksy
22
13k
はてなのチーム開発一巡り / Hatena Engineer Seminar 30
daiksy
0
850
ふりかえりカンファレンスLT/Get Wild
daiksy
0
2k
スクラムマスターの採用事情 / scrum fest fukuoka 2023
daiksy
1
3k
スクラムのスケールとチームトポロジー / Scaled Scrum and Team Topologies
daiksy
1
1.5k
Scrum@Scaleの理論と実装 / RSGT2022
daiksy
2
11k
リモートワークに最適なスクラムチームの人数についての仮説 / Kyoto Agile 2021
daiksy
0
290
Other Decks in Education
See All in Education
Design Guidelines and Models - Lecture 5 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.3k
2025年度伊藤正彦ゼミ紹介
imash
0
160
1202
cbtlibrary
0
200
Future Trends and Review - Lecture 12 - Web Technologies (1019888BNR)
signer
PRO
0
3.2k
160人の中高生にAI・技術体験の講師をしてみた話
shuntatoda
0
250
1111
cbtlibrary
0
270
俺と地方勉強会 - KomeKaigi・地方勉強会への期待 -
pharaohkj
1
1.6k
2025-10-30 社会と情報2025 #05 CC+の代わり
mapconcierge4agu
0
110
KBS新事業創造体験2025_科目説明会
yasuchikawakayama
0
160
AWS re_Invent に全力で参加したくて筋トレを頑張っている話
amarelo_n24
2
120
多様なメンター、多様な基準
yasulab
PRO
5
19k
心理学を学び活用することで偉大なスクラムマスターを目指す − 大学とコミュニティを組み合わせた学びの循環 / Becoming a great Scrum Master by learning and using psychology
psj59129
1
1.5k
Featured
See All Featured
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
Raft: Consensus for Rubyists
vanstee
141
7.3k
Making the Leap to Tech Lead
cromwellryan
135
9.7k
Deep Space Network (abreviated)
tonyrice
0
37
Max Prin - Stacking Signals: How International SEO Comes Together (And Falls Apart)
techseoconnect
PRO
0
75
A designer walks into a library…
pauljervisheath
210
24k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
287
14k
Un-Boring Meetings
codingconduct
0
200
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
Accessibility Awareness
sabderemane
0
45
Mozcon NYC 2025: Stop Losing SEO Traffic
samtorres
0
130
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
2k
Transcript
ͯͳΠϯλʔϯͷ ͭ͘Γํ 2016-12-17 ߹ಉษڧձ in େձԬࢁ - 2016 Winter -
ࣗݾհ പ୩ େี(@daiksy) ▸ גࣜձࣾ ͯͳ ▸ MackerelνʔϜαϒσΟϨΫλʔ ▸ ScalaMatsuriελοϑ
▸ ScalaؔSummitελοϑ ▸ Web+DB Press vol.96 ങ͍·͠ΐ͏ ▸ େࡕ͔Βདྷ·ͨ͠ ▸ 2012͔Βຖ͔ܽͣ͞དྷͯ·͢
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ͯͳΠϯλʔϯͷྺ࢙
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ͯͳΠϯλʔϯͷྺ࢙
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ͯͳΠϯλʔϯͷྺ࢙
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ͯͳΠϯλʔϯͷྺ࢙
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ͯͳΠϯλʔϯͷྺ࢙
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ͯͳΠϯλʔϯͷྺ࢙
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ͯͳΠϯλʔϯͷྺ࢙
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ daiksyͷ͔͔ΘΓ͔ͨ ▸ 201411݄ೖࣾ ▸ 2015 Scalaߨٛͷߨࢣ ▸ 2016 ࣮ߦҕһ
▸ (εϐʔυग़ੈʂʂ)
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ͯͳΠϯλʔϯͷܕ ▸ લ:ߨٛύʔτ ▸ ޙ:࣮ફύʔτ ▸ ޙ՝ఔνʔϜʹଐ͞Ε࣮ͯࡍͷϓϩμΫτΛ։ൃ
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ຖਐԽͯ͠Δ ▸ ͯͳڭՊॻ(https://github.com/hatena/Hatena-Textbook) ຖΞοϓσʔτ ▸ 2015 ScalaͷߨٛΛ৽ઃ ▸ 2016
ػցֶशߨٛΛ৽ઃ
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ 2016ͷΧϦΩϡϥϜ ▸ બߟ௨ա௨ ~ ·Ͱ ▸ ࣄલ՝ ▸ https://github.com/hatena/Hatena-Intern-Exercise2016
▸ 8݄15~9݄9
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ 2016ͷΧϦΩϡϥϜ ▸ ࠓ4ίʔε ▸ ֤ίʔε2໊ͣͭ ▸ ίʔεޙͷ࣮ફύʔτͷड͚ೖΕઌͱͳΔ ▸ ͯͳϒϩάίʔε
▸ ػցֶशɾࣗવݴޠॲཧίʔε ▸ iOSΞϓϦ։ൃίʔε ▸ ΫϥυαʔόཧγεςϜίʔε (Mackerel)
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ 2016ͷΧϦΩϡϥϜ ▸ 16(Ր) ݴޠجૅ Perl or Scala ▸ 17(ਫ)
SQL/DB ▸ 18() HTTP/WebΞϓϦέʔγϣϯϑϨʔϜϫʔΫ ▸ 19(ۚ) Javascript or Swift ▸ 20() ಛผߨ࠲AWSϋϯζΦϯ
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ 2016ͷΧϦΩϡϥϜ ▸ 21() ٳΈ ▸ 22(݄) ࣗ༝՝ ▸ 23(Ր)
ػցֶश جૅฤ ▸ 24(ਫ) ػցֶश Ԡ༻ฤ ▸ 25() Πϯϑϥߨٛ
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ 2016ͷΧϦΩϡϥϜ ▸ 26(ۚ) લ՝ఔՌൃදձ ▸ 27() ژ؍ޫ ▸ 28()
ٳΈ ▸ 29(݄)~9݄8() νʔϜଐɾ࣮ફ ▸ 9(ۚ) ࠷ऴՌൃදձ
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ 2016 ࠷ऴՌ ▸ ͯͳϒϩάίʔε ▸ aboutϖʔδฤूػೳ ͳͲ ▸ ػցֶशɾࣗવݴޠॲཧίʔε
▸ Ոిձٞͷݕࡧਫ਼্ ͳͲ ▸ iOSΞϓϦ։ൃίʔε ▸ ͯͳϒϩάͷΞΫηεղੳΟδΣοτ ͳͲ ▸ ΫϥυαʔόཧγεςϜίʔε (Mackerel) ▸ ΞϥʔτάϥϑʹࢹઃఆͷᮢΛඳը ͳͲ
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ௨শʰਫ਼ਆͱ࣌ͷ෦ʱ
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ Πϯλʔϯͷత ▸ ࠾༻؍ ▸ ֶੜͱاۀ͕ೱີʹίϛϡχέʔγϣϯͰ͖Δػձ ▸ ࣾڭҭ؍ ▸ ڭՊॻࣾͷڭҭʹ͑Δ
▸ एखΤϯδχΞʹߨࢣ/ϝϯλʔΛܦݧͤ͞Δ ▸ ࣾձߩݙ؍ ▸ ΠϯλʔωοτͷԸฦ͠
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ Πϯλʔϯͷ४උ ▸ 3݄15 ΠϯλʔϯҕһձΩοΫΦϑ ▸ 3݄ ΧϦΩϡϥϜͷ͓͓ΑͦΛܾΊΔ ▸ ίϯϐϡʔλɾαΠΤϯεͷߨٛΛՃ͍ͨ͠ɺͱ͍͏͘
Β͍ͷΞότͳߏ ▸ Alpha Go͕ྲྀߦͬͯͨͷͰAlphaޒฒ࣮͠Α͏ͱ͔ ݴͬͯͨ ▸ ࠷ऴతʹ͜Ε͕৽ઃͷػցֶशߨٛͱ࣮ͯ͠ݱ͢Δ
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ Πϯλʔϯͷ४උ ▸ 4݄ ։࠵ࠂͱࣄલొ։࢝ ▸ 5݄ ืूαΠτͷ࡞ɻ25ʹืूαΠτΦʔϓϯ ▸ 6݄
ߨٛϓϩάϥϜͷৄࡉ͕ϑΟοΫεɻߨࢣͷબఆͳͲ ▸ 7݄ ืूకΊΓɻߨٛ४උɻڭՊॻͷΞοϓσʔτɻબߟ ͱ݁Ռ࿈བྷɻ ▸ 8݄ ຊ൪։࢝
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ Πϯλʔϯʹ͔͔ΘΔਓʑ ▸ ΤϯδχΞ৬ ▸ Πϯλʔϯҕһձ 4໊ ▸ ߨࢣ 11໊
▸ ϝϯλʔ 7໊ ▸ ͦͷଞͷ৬छ ▸ ਓࣄ 2໊ ▸ σβΠφ 1໊ ▸ ͦͷଞ ฤू, ใ ͳͲ
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ Πϯλʔϯͷ४උظؒͷʹ͍ͭͯ ▸ ֤νʔϜσΟϨΫλ͔Βɺिͷ10%΄ͲͷΛׂ͔ͤͯ Β͏Α͏ґཔ ▸ ʮઐ৬10%ϧʔϧʯΛ׆༻
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ͭΒ͔ͬͨ͜ͱ ▸ ਘৗͰͳ͍ϓϨογϟʔ ▸ ʮͯͳΠϯλʔϯʯͱ͍͏ϒϥϯυ ▸ ୭Ԡืͯ͘͠Εͳ͔ͬͨΒͲ͏͠Α͏… ▸ ͍͍ਓ͕དྷͳ͔ͬͨΒͲ͏͠Α͏…
▸ ίϯτϩʔϥϒϧͰͳ͍ཁૉଟ͍
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ͭΒ͔ͬͨ͜ͱ ▸ બߟ͕େม ▸ ݁Ռతʹաڈ࠷ଟͷԠื ▸ ͜ͷਓ͔ΒͲ͏ͬͯ8໊બ… ▸ ௨ա࿈བྷޙʹࣙୀ͕͋ͬͨΓ
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ͭΒ͔ͬͨ͜ͱ ▸ ࣾௐ͕େม ▸ ͯͳͷશ৬छ͕ͳΜΒ͔ͷܗͰ͔͔Θͬͯ͘ΕΔ ▸ શһΊͪΌͪ͘Όલ͖ʹखͬͯ͘ΕΔ ▸ ͱ͍͑ਓؔ࿈෦͕ଟ͍͗ͯͨ͢Μ
▸ ڞ༗࿙ΕͳͲҕһձͱͯ͠ͷল͕͍͔ͭ͘
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ՝ ▸ ΠϯλʔϯࠓͲͬͯ͜Δ ▸ Նͩͱଟ͘ͷձࣾͱ࣌ظ͕ඃΔ ▸ ֶੜෳͷΠϯλʔϯʹߦ͘ ▸ Πϯλʔϯͷ௨Խ/ظؒԽ
▸ ͯͳΠϯλʔϯ৽͍͠ܕΛߟ͑Δ࣌ظͩͱײ͡Δ
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ Πϯλʔϯͷࣄ͍ͭ·Ͱʁ ▸ ࣮·ͩऴΘͬͯͳ͍ɻϨϙʔταΠτ࡞ͬͯΔ ▸ དྷͷҕһձʹҾ͖ܧ͗͢Δ·Ͱ͕ҕһͷ͠͝ͱ
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ΤϯδχΞઈࢍืूதʂ ▸ ৽ଔ ▸ த్ ▸ དྷͷΠϯλʔϯੜ ▸ ͓ؾܰʹ͓͕͚͍ͩ͘͞ʂʂʂ
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠