Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
はてなインターンのつくりかた
Search
KASUYA, Daisuke
December 18, 2016
Education
0
2k
はてなインターンのつくりかた
合同勉強会 in 大都会岡山 winter 2016の登壇資料
KASUYA, Daisuke
December 18, 2016
Tweet
Share
More Decks by KASUYA, Daisuke
See All by KASUYA, Daisuke
わたしがEMとして入社した「最初の100日」の過ごし方 / EMConfJp2025
daiksy
14
5.3k
はてなのチーム開発一巡り / Hatena Engineer Seminar 30
daiksy
0
660
ふりかえりカンファレンスLT/Get Wild
daiksy
0
1.9k
スクラムマスターの採用事情 / scrum fest fukuoka 2023
daiksy
0
2.7k
スクラムのスケールとチームトポロジー / Scaled Scrum and Team Topologies
daiksy
1
1.3k
Scrum@Scaleの理論と実装 / RSGT2022
daiksy
2
10k
リモートワークに最適なスクラムチームの人数についての仮説 / Kyoto Agile 2021
daiksy
0
250
スクラムを軸に据えた キャリア戦略 / Scrum Fest Osaka 2021
daiksy
2
7k
インフラ障害対応演習LT版 / evacuation drill of systems
daiksy
1
760
Other Decks in Education
See All in Education
Information Architectures - Lecture 2 - Next Generation User Interfaces (4018166FNR)
signer
PRO
0
1.4k
Image compression
hachama
0
410
プログラミング基礎#4(名古屋造形大学)
yusk1450
PRO
0
120
自己紹介 / who-am-i
yasulab
PRO
2
4.6k
Semantic Web and Web 3.0 - Lecture 9 - Web Technologies (1019888BNR)
signer
PRO
2
2.7k
リバースバケットリスト 〜 「死ぬまでにやることリスト」の欠点と対処法
takibi333
0
130
Поступай в ТОГУ 2025
pnuslide
0
20k
Sähköiset kyselyt, kokeet ja arviointi
matleenalaakso
1
18k
ヘイトスピーチがある世界のコミュニケーション
ktanishima
0
1.1k
ニュースメディアにおける生成 AI の活用と開発 / UTokyo Lecture Business Introduction
upura
0
240
2024年度秋学期 統計学 第11回 分布の「型」を考える - 確率分布モデルと正規分布 (2024. 12. 4)
akiraasano
PRO
0
120
The Task is not the End: The Role of Task Repetition and Sequencing In Language Teaching
uranoken
0
310
Featured
See All Featured
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
6
570
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
4
430
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Designing for humans not robots
tammielis
250
25k
Java REST API Framework Comparison - PWX 2021
mraible
29
8.4k
The Cult of Friendly URLs
andyhume
78
6.2k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
33
2.8k
Automating Front-end Workflow
addyosmani
1368
200k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
A Modern Web Designer's Workflow
chriscoyier
693
190k
Six Lessons from altMBA
skipperchong
27
3.6k
Adopting Sorbet at Scale
ufuk
74
9.2k
Transcript
ͯͳΠϯλʔϯͷ ͭ͘Γํ 2016-12-17 ߹ಉษڧձ in େձԬࢁ - 2016 Winter -
ࣗݾհ പ୩ େี(@daiksy) ▸ גࣜձࣾ ͯͳ ▸ MackerelνʔϜαϒσΟϨΫλʔ ▸ ScalaMatsuriελοϑ
▸ ScalaؔSummitελοϑ ▸ Web+DB Press vol.96 ങ͍·͠ΐ͏ ▸ େࡕ͔Βདྷ·ͨ͠ ▸ 2012͔Βຖ͔ܽͣ͞དྷͯ·͢
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ͯͳΠϯλʔϯͷྺ࢙
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ͯͳΠϯλʔϯͷྺ࢙
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ͯͳΠϯλʔϯͷྺ࢙
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ͯͳΠϯλʔϯͷྺ࢙
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ͯͳΠϯλʔϯͷྺ࢙
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ͯͳΠϯλʔϯͷྺ࢙
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ͯͳΠϯλʔϯͷྺ࢙
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ daiksyͷ͔͔ΘΓ͔ͨ ▸ 201411݄ೖࣾ ▸ 2015 Scalaߨٛͷߨࢣ ▸ 2016 ࣮ߦҕһ
▸ (εϐʔυग़ੈʂʂ)
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ͯͳΠϯλʔϯͷܕ ▸ લ:ߨٛύʔτ ▸ ޙ:࣮ફύʔτ ▸ ޙ՝ఔνʔϜʹଐ͞Ε࣮ͯࡍͷϓϩμΫτΛ։ൃ
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ຖਐԽͯ͠Δ ▸ ͯͳڭՊॻ(https://github.com/hatena/Hatena-Textbook) ຖΞοϓσʔτ ▸ 2015 ScalaͷߨٛΛ৽ઃ ▸ 2016
ػցֶशߨٛΛ৽ઃ
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ 2016ͷΧϦΩϡϥϜ ▸ બߟ௨ա௨ ~ ·Ͱ ▸ ࣄલ՝ ▸ https://github.com/hatena/Hatena-Intern-Exercise2016
▸ 8݄15~9݄9
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ 2016ͷΧϦΩϡϥϜ ▸ ࠓ4ίʔε ▸ ֤ίʔε2໊ͣͭ ▸ ίʔεޙͷ࣮ફύʔτͷड͚ೖΕઌͱͳΔ ▸ ͯͳϒϩάίʔε
▸ ػցֶशɾࣗવݴޠॲཧίʔε ▸ iOSΞϓϦ։ൃίʔε ▸ ΫϥυαʔόཧγεςϜίʔε (Mackerel)
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ 2016ͷΧϦΩϡϥϜ ▸ 16(Ր) ݴޠجૅ Perl or Scala ▸ 17(ਫ)
SQL/DB ▸ 18() HTTP/WebΞϓϦέʔγϣϯϑϨʔϜϫʔΫ ▸ 19(ۚ) Javascript or Swift ▸ 20() ಛผߨ࠲AWSϋϯζΦϯ
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ 2016ͷΧϦΩϡϥϜ ▸ 21() ٳΈ ▸ 22(݄) ࣗ༝՝ ▸ 23(Ր)
ػցֶश جૅฤ ▸ 24(ਫ) ػցֶश Ԡ༻ฤ ▸ 25() Πϯϑϥߨٛ
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ 2016ͷΧϦΩϡϥϜ ▸ 26(ۚ) લ՝ఔՌൃදձ ▸ 27() ژ؍ޫ ▸ 28()
ٳΈ ▸ 29(݄)~9݄8() νʔϜଐɾ࣮ફ ▸ 9(ۚ) ࠷ऴՌൃදձ
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ 2016 ࠷ऴՌ ▸ ͯͳϒϩάίʔε ▸ aboutϖʔδฤूػೳ ͳͲ ▸ ػցֶशɾࣗવݴޠॲཧίʔε
▸ Ոిձٞͷݕࡧਫ਼্ ͳͲ ▸ iOSΞϓϦ։ൃίʔε ▸ ͯͳϒϩάͷΞΫηεղੳΟδΣοτ ͳͲ ▸ ΫϥυαʔόཧγεςϜίʔε (Mackerel) ▸ ΞϥʔτάϥϑʹࢹઃఆͷᮢΛඳը ͳͲ
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ௨শʰਫ਼ਆͱ࣌ͷ෦ʱ
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ Πϯλʔϯͷత ▸ ࠾༻؍ ▸ ֶੜͱاۀ͕ೱີʹίϛϡχέʔγϣϯͰ͖Δػձ ▸ ࣾڭҭ؍ ▸ ڭՊॻࣾͷڭҭʹ͑Δ
▸ एखΤϯδχΞʹߨࢣ/ϝϯλʔΛܦݧͤ͞Δ ▸ ࣾձߩݙ؍ ▸ ΠϯλʔωοτͷԸฦ͠
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ Πϯλʔϯͷ४උ ▸ 3݄15 ΠϯλʔϯҕһձΩοΫΦϑ ▸ 3݄ ΧϦΩϡϥϜͷ͓͓ΑͦΛܾΊΔ ▸ ίϯϐϡʔλɾαΠΤϯεͷߨٛΛՃ͍ͨ͠ɺͱ͍͏͘
Β͍ͷΞότͳߏ ▸ Alpha Go͕ྲྀߦͬͯͨͷͰAlphaޒฒ࣮͠Α͏ͱ͔ ݴͬͯͨ ▸ ࠷ऴతʹ͜Ε͕৽ઃͷػցֶशߨٛͱ࣮ͯ͠ݱ͢Δ
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ Πϯλʔϯͷ४උ ▸ 4݄ ։࠵ࠂͱࣄલొ։࢝ ▸ 5݄ ืूαΠτͷ࡞ɻ25ʹืूαΠτΦʔϓϯ ▸ 6݄
ߨٛϓϩάϥϜͷৄࡉ͕ϑΟοΫεɻߨࢣͷબఆͳͲ ▸ 7݄ ืूకΊΓɻߨٛ४උɻڭՊॻͷΞοϓσʔτɻબߟ ͱ݁Ռ࿈བྷɻ ▸ 8݄ ຊ൪։࢝
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ Πϯλʔϯʹ͔͔ΘΔਓʑ ▸ ΤϯδχΞ৬ ▸ Πϯλʔϯҕһձ 4໊ ▸ ߨࢣ 11໊
▸ ϝϯλʔ 7໊ ▸ ͦͷଞͷ৬छ ▸ ਓࣄ 2໊ ▸ σβΠφ 1໊ ▸ ͦͷଞ ฤू, ใ ͳͲ
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ Πϯλʔϯͷ४උظؒͷʹ͍ͭͯ ▸ ֤νʔϜσΟϨΫλ͔Βɺिͷ10%΄ͲͷΛׂ͔ͤͯ Β͏Α͏ґཔ ▸ ʮઐ৬10%ϧʔϧʯΛ׆༻
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ͭΒ͔ͬͨ͜ͱ ▸ ਘৗͰͳ͍ϓϨογϟʔ ▸ ʮͯͳΠϯλʔϯʯͱ͍͏ϒϥϯυ ▸ ୭Ԡืͯ͘͠Εͳ͔ͬͨΒͲ͏͠Α͏… ▸ ͍͍ਓ͕དྷͳ͔ͬͨΒͲ͏͠Α͏…
▸ ίϯτϩʔϥϒϧͰͳ͍ཁૉଟ͍
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ͭΒ͔ͬͨ͜ͱ ▸ બߟ͕େม ▸ ݁Ռతʹաڈ࠷ଟͷԠื ▸ ͜ͷਓ͔ΒͲ͏ͬͯ8໊બ… ▸ ௨ա࿈བྷޙʹࣙୀ͕͋ͬͨΓ
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ͭΒ͔ͬͨ͜ͱ ▸ ࣾௐ͕େม ▸ ͯͳͷશ৬छ͕ͳΜΒ͔ͷܗͰ͔͔Θͬͯ͘ΕΔ ▸ શһΊͪΌͪ͘Όલ͖ʹखͬͯ͘ΕΔ ▸ ͱ͍͑ਓؔ࿈෦͕ଟ͍͗ͯͨ͢Μ
▸ ڞ༗࿙ΕͳͲҕһձͱͯ͠ͷল͕͍͔ͭ͘
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ՝ ▸ ΠϯλʔϯࠓͲͬͯ͜Δ ▸ Նͩͱଟ͘ͷձࣾͱ࣌ظ͕ඃΔ ▸ ֶੜෳͷΠϯλʔϯʹߦ͘ ▸ Πϯλʔϯͷ௨Խ/ظؒԽ
▸ ͯͳΠϯλʔϯ৽͍͠ܕΛߟ͑Δ࣌ظͩͱײ͡Δ
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ Πϯλʔϯͷࣄ͍ͭ·Ͱʁ ▸ ࣮·ͩऴΘͬͯͳ͍ɻϨϙʔταΠτ࡞ͬͯΔ ▸ དྷͷҕһձʹҾ͖ܧ͗͢Δ·Ͱ͕ҕһͷ͠͝ͱ
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ΤϯδχΞઈࢍืूதʂ ▸ ৽ଔ ▸ த్ ▸ དྷͷΠϯλʔϯੜ ▸ ͓ؾܰʹ͓͕͚͍ͩ͘͞ʂʂʂ
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠