Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
はてなインターンのつくりかた
Search
KASUYA, Daisuke
December 18, 2016
Education
0
2k
はてなインターンのつくりかた
合同勉強会 in 大都会岡山 winter 2016の登壇資料
KASUYA, Daisuke
December 18, 2016
Tweet
Share
More Decks by KASUYA, Daisuke
See All by KASUYA, Daisuke
はてなの開発20年史と DevOpsの歩み / DevOpsDays Tokyo 2025 Keynote
daiksy
6
2k
わたしがEMとして入社した「最初の100日」の過ごし方 / EMConfJp2025
daiksy
15
8.2k
はてなのチーム開発一巡り / Hatena Engineer Seminar 30
daiksy
0
760
ふりかえりカンファレンスLT/Get Wild
daiksy
0
1.9k
スクラムマスターの採用事情 / scrum fest fukuoka 2023
daiksy
0
2.8k
スクラムのスケールとチームトポロジー / Scaled Scrum and Team Topologies
daiksy
1
1.4k
Scrum@Scaleの理論と実装 / RSGT2022
daiksy
2
10k
リモートワークに最適なスクラムチームの人数についての仮説 / Kyoto Agile 2021
daiksy
0
270
スクラムを軸に据えた キャリア戦略 / Scrum Fest Osaka 2021
daiksy
2
7.1k
Other Decks in Education
See All in Education
Webリテラシー基礎
takenawa
0
5.9k
2025年度春学期 統計学 第2回 統計資料の収集と読み方(講義前配付用) (2025. 4. 17)
akiraasano
PRO
0
140
教員向け生成AI基礎講座(2025年3月28日 東京大学メタバース工学部 ジュニア講座)
luiyoshida
1
570
バックオフィス組織にも「チームトポロジー」の考えが使えるかもしれない!!
masakiokuda
0
110
OJTに夢を見すぎていませんか? ロールプレイ研修の試行錯誤/tryanderror-in-roleplaying-training
takipone
1
150
データ分析
takenawa
0
5.9k
SkimaTalk Teacher Guidelines Summary
skimatalk
0
790k
(キラキラ)人事教育担当のつらみ~教育担当として知っておくポイント~
masakiokuda
0
100
Data Processing and Visualisation Frameworks - Lecture 6 - Information Visualisation (4019538FNR)
signer
PRO
1
2.4k
ThingLink
matleenalaakso
28
4.1k
ANS-C01_2回不合格から合格までの道程
amarelo_n24
1
250
Open Source Summit Japan 2025のボランティアをしませんか
kujiraitakahiro
0
720
Featured
See All Featured
StorybookのUI Testing Handbookを読んだ
zakiyama
30
5.9k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Statistics for Hackers
jakevdp
799
220k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.5k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
940
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
181
53k
The Pragmatic Product Professional
lauravandoore
35
6.7k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.5k
How to Think Like a Performance Engineer
csswizardry
24
1.7k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
48
2.9k
Building an army of robots
kneath
306
45k
Transcript
ͯͳΠϯλʔϯͷ ͭ͘Γํ 2016-12-17 ߹ಉษڧձ in େձԬࢁ - 2016 Winter -
ࣗݾհ പ୩ େี(@daiksy) ▸ גࣜձࣾ ͯͳ ▸ MackerelνʔϜαϒσΟϨΫλʔ ▸ ScalaMatsuriελοϑ
▸ ScalaؔSummitελοϑ ▸ Web+DB Press vol.96 ങ͍·͠ΐ͏ ▸ େࡕ͔Βདྷ·ͨ͠ ▸ 2012͔Βຖ͔ܽͣ͞དྷͯ·͢
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ͯͳΠϯλʔϯͷྺ࢙
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ͯͳΠϯλʔϯͷྺ࢙
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ͯͳΠϯλʔϯͷྺ࢙
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ͯͳΠϯλʔϯͷྺ࢙
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ͯͳΠϯλʔϯͷྺ࢙
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ͯͳΠϯλʔϯͷྺ࢙
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ͯͳΠϯλʔϯͷྺ࢙
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ daiksyͷ͔͔ΘΓ͔ͨ ▸ 201411݄ೖࣾ ▸ 2015 Scalaߨٛͷߨࢣ ▸ 2016 ࣮ߦҕһ
▸ (εϐʔυग़ੈʂʂ)
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ͯͳΠϯλʔϯͷܕ ▸ લ:ߨٛύʔτ ▸ ޙ:࣮ફύʔτ ▸ ޙ՝ఔνʔϜʹଐ͞Ε࣮ͯࡍͷϓϩμΫτΛ։ൃ
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ຖਐԽͯ͠Δ ▸ ͯͳڭՊॻ(https://github.com/hatena/Hatena-Textbook) ຖΞοϓσʔτ ▸ 2015 ScalaͷߨٛΛ৽ઃ ▸ 2016
ػցֶशߨٛΛ৽ઃ
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ 2016ͷΧϦΩϡϥϜ ▸ બߟ௨ա௨ ~ ·Ͱ ▸ ࣄલ՝ ▸ https://github.com/hatena/Hatena-Intern-Exercise2016
▸ 8݄15~9݄9
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ 2016ͷΧϦΩϡϥϜ ▸ ࠓ4ίʔε ▸ ֤ίʔε2໊ͣͭ ▸ ίʔεޙͷ࣮ફύʔτͷड͚ೖΕઌͱͳΔ ▸ ͯͳϒϩάίʔε
▸ ػցֶशɾࣗવݴޠॲཧίʔε ▸ iOSΞϓϦ։ൃίʔε ▸ ΫϥυαʔόཧγεςϜίʔε (Mackerel)
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ 2016ͷΧϦΩϡϥϜ ▸ 16(Ր) ݴޠجૅ Perl or Scala ▸ 17(ਫ)
SQL/DB ▸ 18() HTTP/WebΞϓϦέʔγϣϯϑϨʔϜϫʔΫ ▸ 19(ۚ) Javascript or Swift ▸ 20() ಛผߨ࠲AWSϋϯζΦϯ
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ 2016ͷΧϦΩϡϥϜ ▸ 21() ٳΈ ▸ 22(݄) ࣗ༝՝ ▸ 23(Ր)
ػցֶश جૅฤ ▸ 24(ਫ) ػցֶश Ԡ༻ฤ ▸ 25() Πϯϑϥߨٛ
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ 2016ͷΧϦΩϡϥϜ ▸ 26(ۚ) લ՝ఔՌൃදձ ▸ 27() ژ؍ޫ ▸ 28()
ٳΈ ▸ 29(݄)~9݄8() νʔϜଐɾ࣮ફ ▸ 9(ۚ) ࠷ऴՌൃදձ
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ 2016 ࠷ऴՌ ▸ ͯͳϒϩάίʔε ▸ aboutϖʔδฤूػೳ ͳͲ ▸ ػցֶशɾࣗવݴޠॲཧίʔε
▸ Ոిձٞͷݕࡧਫ਼্ ͳͲ ▸ iOSΞϓϦ։ൃίʔε ▸ ͯͳϒϩάͷΞΫηεղੳΟδΣοτ ͳͲ ▸ ΫϥυαʔόཧγεςϜίʔε (Mackerel) ▸ ΞϥʔτάϥϑʹࢹઃఆͷᮢΛඳը ͳͲ
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ௨শʰਫ਼ਆͱ࣌ͷ෦ʱ
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ Πϯλʔϯͷత ▸ ࠾༻؍ ▸ ֶੜͱاۀ͕ೱີʹίϛϡχέʔγϣϯͰ͖Δػձ ▸ ࣾڭҭ؍ ▸ ڭՊॻࣾͷڭҭʹ͑Δ
▸ एखΤϯδχΞʹߨࢣ/ϝϯλʔΛܦݧͤ͞Δ ▸ ࣾձߩݙ؍ ▸ ΠϯλʔωοτͷԸฦ͠
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ Πϯλʔϯͷ४උ ▸ 3݄15 ΠϯλʔϯҕһձΩοΫΦϑ ▸ 3݄ ΧϦΩϡϥϜͷ͓͓ΑͦΛܾΊΔ ▸ ίϯϐϡʔλɾαΠΤϯεͷߨٛΛՃ͍ͨ͠ɺͱ͍͏͘
Β͍ͷΞότͳߏ ▸ Alpha Go͕ྲྀߦͬͯͨͷͰAlphaޒฒ࣮͠Α͏ͱ͔ ݴͬͯͨ ▸ ࠷ऴతʹ͜Ε͕৽ઃͷػցֶशߨٛͱ࣮ͯ͠ݱ͢Δ
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ Πϯλʔϯͷ४උ ▸ 4݄ ։࠵ࠂͱࣄલొ։࢝ ▸ 5݄ ืूαΠτͷ࡞ɻ25ʹืूαΠτΦʔϓϯ ▸ 6݄
ߨٛϓϩάϥϜͷৄࡉ͕ϑΟοΫεɻߨࢣͷબఆͳͲ ▸ 7݄ ืूకΊΓɻߨٛ४උɻڭՊॻͷΞοϓσʔτɻબߟ ͱ݁Ռ࿈བྷɻ ▸ 8݄ ຊ൪։࢝
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ Πϯλʔϯʹ͔͔ΘΔਓʑ ▸ ΤϯδχΞ৬ ▸ Πϯλʔϯҕһձ 4໊ ▸ ߨࢣ 11໊
▸ ϝϯλʔ 7໊ ▸ ͦͷଞͷ৬छ ▸ ਓࣄ 2໊ ▸ σβΠφ 1໊ ▸ ͦͷଞ ฤू, ใ ͳͲ
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ Πϯλʔϯͷ४උظؒͷʹ͍ͭͯ ▸ ֤νʔϜσΟϨΫλ͔Βɺिͷ10%΄ͲͷΛׂ͔ͤͯ Β͏Α͏ґཔ ▸ ʮઐ৬10%ϧʔϧʯΛ׆༻
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ͭΒ͔ͬͨ͜ͱ ▸ ਘৗͰͳ͍ϓϨογϟʔ ▸ ʮͯͳΠϯλʔϯʯͱ͍͏ϒϥϯυ ▸ ୭Ԡืͯ͘͠Εͳ͔ͬͨΒͲ͏͠Α͏… ▸ ͍͍ਓ͕དྷͳ͔ͬͨΒͲ͏͠Α͏…
▸ ίϯτϩʔϥϒϧͰͳ͍ཁૉଟ͍
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ͭΒ͔ͬͨ͜ͱ ▸ બߟ͕େม ▸ ݁Ռతʹաڈ࠷ଟͷԠื ▸ ͜ͷਓ͔ΒͲ͏ͬͯ8໊બ… ▸ ௨ա࿈བྷޙʹࣙୀ͕͋ͬͨΓ
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ͭΒ͔ͬͨ͜ͱ ▸ ࣾௐ͕େม ▸ ͯͳͷશ৬छ͕ͳΜΒ͔ͷܗͰ͔͔Θͬͯ͘ΕΔ ▸ શһΊͪΌͪ͘Όલ͖ʹखͬͯ͘ΕΔ ▸ ͱ͍͑ਓؔ࿈෦͕ଟ͍͗ͯͨ͢Μ
▸ ڞ༗࿙ΕͳͲҕһձͱͯ͠ͷল͕͍͔ͭ͘
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ՝ ▸ ΠϯλʔϯࠓͲͬͯ͜Δ ▸ Նͩͱଟ͘ͷձࣾͱ࣌ظ͕ඃΔ ▸ ֶੜෳͷΠϯλʔϯʹߦ͘ ▸ Πϯλʔϯͷ௨Խ/ظؒԽ
▸ ͯͳΠϯλʔϯ৽͍͠ܕΛߟ͑Δ࣌ظͩͱײ͡Δ
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ Πϯλʔϯͷࣄ͍ͭ·Ͱʁ ▸ ࣮·ͩऴΘͬͯͳ͍ɻϨϙʔταΠτ࡞ͬͯΔ ▸ དྷͷҕһձʹҾ͖ܧ͗͢Δ·Ͱ͕ҕһͷ͠͝ͱ
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ΤϯδχΞઈࢍืूதʂ ▸ ৽ଔ ▸ த్ ▸ དྷͷΠϯλʔϯੜ ▸ ͓ؾܰʹ͓͕͚͍ͩ͘͞ʂʂʂ
ͯͳΠϯλʔϯͷͭ͘Γ͔ͨ ͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠