Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Paths to a Unified AGN Outflow Model via Computational Relativity

Paths to a Unified AGN Outflow Model via Computational Relativity

Talk presented at Challenges and Innovations in Computational Astrophysics - II (Virtual), November 2020

Ashkbiz Danehkar

November 20, 2020
Tweet

More Decks by Ashkbiz Danehkar

Other Decks in Research

Transcript

  1. Paths to
    a Unified AGN Outflow Model
    via Computational Relativity
    Ashkbiz Danehkar, Postdoc
    Department of Astronomy, University of Michigan
    [email protected]
    Challenges and Innovations in Computational Astrophysics - II, November 20, 2020
    Image Credit: J. Bergeron, Sky & Telescope Magazine
    Image Credit: J. Bergeron, Sky & Telescope Magazine

    View Slide

  2. 20/11/2020 Computational Astrophysics II
    2
    Outline

    Observational Background
     AGN Classification
     Ultra-Fast Outflow (UFO)
     Evidence for a Unified AGN Outflow Model
     Implication of Black Hole Spins

    Black Hole Spin Surveys
     Relativistically broadened Fluorescence K-shell Iron Line
     Compton continuum above 7 keV
     Relativistic Reflection Model (relxill + xillver)

    Numerical Relativity
     Visualization of Gravitational Physical Lines: Tendex and Vortex
     Einstein Cactus Computational Toolkit

    View Slide

  3. 20/11/2020 Computational Astrophysics II
    3
    AGN Classification
    Observational Background
    AGN Unified Model (radio-loud & -quiet AGN, Seyfert I & II Galaxies)
    Beckmann & Shrader 2012,
    Active Galactic Nuclei
    Unified Models for AGNs
    Antonucci, ARA&A, 1993, 31, 473
    Unified Schemes for AGNs
    Megan Urry & Padovani, 1995, PASP, 107, 803
    (Bernie Fanaroff &
    Julia Riley 1974)
    AGN Unified Model
    • Radio-Quiet AGN
     Seyfert I (BLR+NLR,
    compact outflows)
     Seyfert II (NLR)
    • Radio-Loud AGN
     FR I (compact radio jets)
     FR II (extended radio jets)
     Blazar (relativistic beams)
    (Carl Seyfert 1942)

    View Slide

  4. 20/11/2020 Computational Astrophysics II
    4
    Ultra-fast Outflows
    Disk
    Black-
    body
    Hot Corona
    Warm
    Absorbers
    K-shell Iron
    Beckmann & Shrader 2012
    Risaliti & Elvis 2004
    (bbody + powerlaw + ∑ emis) x ∏ abs

    View Slide

  5. 20/11/2020 Computational Astrophysics II
    5
    Evidence for Unified AGN Outflow
    Correlation between outflow kinematics and physical conditions
    Tombesi + 2013
    (Ultra-fast outflows)
    (Warm Absorbers)

    View Slide

  6. 20/11/2020 Computational Astrophysics II
    6
    Problems
    Radio-quiet and radio-loud AGN
    Garofalo + 2010

    Radio-quiet AGN
    – Compact Outflows
    – Weak Radio Source

    Radio-loud AGN
    – Extended Jets
    – Strong Radio Source
    – Typically in elliptical massive
    galaxies evolved from recent mergers (binary SMBH?)

    View Slide

  7. 20/11/2020 Computational Astrophysics II
    7
    Observational Background
    AGN Classification: Radio-loud & Radio-quiet AGN
    Dermer & Giebles 2016

    View Slide

  8. 20/11/2020 Computational Astrophysics II
    8
    Implication of Black Hole Spins
    Correlation between SMBH Angular Momentum with Uktra-fast Outflows
    Danehkar +

    View Slide

  9. 20/11/2020 Computational Astrophysics II
    9
    Measurements of Black Hole Spins
    Black Hole Spin Measurement (see Brenneman 2013)

    Thermal Continuum Fitting (UV observation)
    – stellar-mass black hole
    – AGN (may problematic due to UV absorption lines!)

    Inner Disk Reflection Modeling
    – AGN (X-ray)

    High Frequency Quasi-Periodic Oscillations
    – AGN + stellar-mass black hole (fully not developed)

    X-ray Polarimetry
    – Need sensitive X-ray polarimter (not available now!)

    Imaging the Event Horizon Shadow
    – Need Very Long Baseline Interferometry (in development)
    – Suitable only for Sgr A* and M87
    a = J c / G M2
    (a: BH spin, J: angular momentum, M: BH mass, G: gravitational constant, c: speed of light)

    View Slide

  10. 20/11/2020 Computational Astrophysics II
    10
    Measurements of Black Hole Spins
    Relativistically broadened Kα iron line (6.4 keV)
    Compton hump (> 10keV)
    Black Hole Spin Measurement from X-ray
    a = - 1
    a = 0
    a = 1
    Image credit: NASA/JPL-Caltech

    View Slide

  11. 20/11/2020 Computational Astrophysics II
    11
    Measurements of Black Hole Spins
    BH Spin from Reflection Modeling

    kerrconv (Brenneman & Reynold 2006)

    relline (Dauser + 2010)

    xillver (Garcia + 2010,11,13)

    relxill (Garcia + 2014)
    Dauser & Garcia + 2014

    View Slide

  12. 20/11/2020 Computational Astrophysics II
    12
    Supermassive Black Hole Spin

    View Slide

  13. 20/11/2020 Computational Astrophysics II
    13
    Numerical Relativity
    Weyl (Vacuum Riemann) Tensor
    Einstein’s 70th birthday, Institute for Advanced Study, 1949
    Weyl, Mathematische Zeitschrift, 2, 384, 1918

    View Slide

  14. 20/11/2020 Computational Astrophysics II
    14
    Numerical Relativity
    Gravitoelectric and Gravitomagnetic Tensors

    Gravitoelectric & Gravitomagnetic fields
    – Names coined by Kip Thorne (IAU, 97, 255, 1982)
    – Thorne et al. Black holes: The membrane paradigm (Yale
    University, 1986)

    Gravitoelectric Tensor
    – Newtonian Tidal Force

    Gravitomagnetic Tensor
    – Frame-dragging vortex & Gravitational Waves

    Bianchi Identities
    – Constraints for gravitoelectric & gravitomagnetic
    (see e.g. Relativistic Cosmology, Ellis, Maartens, &
    MacCallum, Cambridge, 2012)
    Kip Thorne’s 60th birthday, Caltech, 2000

    View Slide

  15. 20/11/2020 Computational Astrophysics II
    15
    Numerical Relativity
    Tendex and Vortex Lines

    Visualization of Gravitoelectric & Gravitomagnetic tensors
    – Nichols et al. PRD 84, 124012, 2011; PRD 86, 104028, 2012

    Tidal Tendex Line
    – Tendex coined by David Nichols (tendere: ‘to stretch’)
    – integral curves of eigenvectors of gravitoeletric tensor
    – Owen el al. PRL 106, 151101, 2011
    – Zhang et al. PRD 86, 084049, 2012

    Frame-dragging Vortex Line
    – integral curves of eigenvectors of gravitomagnetic tensor
    eigenvector eigenvalue
    eigenvector eigenvalue Owen el al. PRL 106, 151101, 2011

    View Slide

  16. 20/11/2020 Computational Astrophysics II
    16
    Numerical Relativity
    Tendex and Vortex Lines of Slowly Spinning SMBH
    Danehkar, IJMPD, 2020, arXiv:2006.13287 [gr-qc]

    Visualization of Eab & Hab around a slow Kerr BH
    – slow Kerr metric (Zhang et al. PRD 86, 084049, 2012)
    – gravitoelectric tensor
    – gravitomagnetic tensor (Zhang et al. PRD 86, 084049, 2012)

    View Slide

  17. 20/11/2020 Computational Astrophysics II
    17
    Numerical Relativity
    Tendex and Vortex Lines of Fast Spinning BH

    Visualization of Eab & Hab around a fast Kerr BH
    Tidal Tendex Line Frame-dragging Vortex Line
    Zhang et al. PRD 86, 084049, 2012

    View Slide

  18. 20/11/2020 Computational Astrophysics II
    18
    Numerical Relativity
    Tendex and Vortex Lines of Merging Binary BH

    Visualization of Eab & Hab around binary BHs
    Tidal Tendex Line Frame-dragging Vortex Line

    Spectral Einstein Code (SpEC)
    – https://www.black-holes.org/code/SpEC.html
    – SpEC is not publicity available

    New version: SpECTRE
    – https://github.com/sxs-collaboration/spectre
    – SpECTRE is still under development by the SXS (Simulating eXtreme Spacetimes) Collaboration, and not yet ready
    – Updates on SpECTRE code: https://icerm.brown.edu/programs/sp-f20/w3/ (see talk, Oct 28)
    Owen el al. PRL 106, 151101, 2011

    View Slide

  19. 20/11/2020 Computational Astrophysics II
    19
    Numerical Relativity
    Gravitational Waves

    Visualization of Eab & Hab around binary BHs
    – Gravitational Wave Simulations by SpEC
    Owen el al. PRL 106, 151101, 2011
    LIGO detection of gravitational waves, 2016

    View Slide

  20. 20/11/2020 Computational Astrophysics II
    20
    Numerical Relativity
    Einstein Cactus Computational Toolkit

    The Einstein Toolkit (https://einsteintoolkit.org/)
    – Cactus Thorns (http://svn.einsteintoolkit.org/cactus/)
    – Recent Tutorial: https://icerm.brown.edu/programs/sp-f20/w1/

    Einstein Toolkit Thorn: EinsteinAnalysis/WeylScal4
    – calculates Weyl scalars in the Einstein Toolkit
    – converted to Thorn using Kranc (http://kranccode.org/)

    New Module for gravitoelectric and gravitomagnetic tensors in the Einstein
    Toolkit
    – can be made by Mathemtica scripts and converted to Thorn using Kranc

    Kranc: Mathematica program turns tensorial equations into a thorn for the Cactus
    Computational Toolkit
    transverse wave component for GW simulations of mergers

    View Slide

  21. 20/11/2020 Computational Astrophysics II
    21
    Summary
    Unified AGN Outflow Model via BH Spin Survey
    & Numerical Relativity

    Observational Background
    – Observational Evidence for a Unified AGN Outflow Model
    – Possible correlation between SMBH angular momentum and AGN outflows
    – Physical mechanism behind radio-loud AGN: binary SMBH in radio-loud?

    Black Hole Spin Surveys
     Relativistically broadened Fluorescence Iron Line + Compton continuum
     Relativistic Reflection Model (relxill + xillver)

    Numerical Relativity
    – Gravitoelectric and Gravitiomagnetic tensors
    visualized using their Tidal Tendex and Frame-dragging Vortex Lines.
    – Visualization of Tendex and Vortex lines for exact solutions and binary BHs are very
    complex, but can be done using a new module made by either Kranc or NRPy+ for the
    Einstein Toolkit. These simulations are computationally expensive (need HPC)

    View Slide

  22. 20/11/2020 Computational Astrophysics II
    22
    Image Credit: J. Bergeron, Sky & Telescope Magazine
    Image Credit: J. Bergeron, Sky & Telescope Magazine
    Thank you for your attention
    Thank you for your attention

    View Slide