Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Understanding north Java coastal aquifer system...

Understanding north Java coastal aquifer system : evidence from Kendal, Mid Java

This slide was presented in the ICES ITB July 2016. The official website of this event is http://portal.fi.itb.ac.id/ices2016/. I also invite you to visit my blogs: dasaptaerwin.wordpress.com and dasaptaerwin.net/wp.

The first author is Ali Lukman, an ITB graduate, now pursuing master program in geology. He is now working as a engineering consultant for PT. Supra Indodrill (http://supraindodrill.com/).

@dasaptaerwin
ORCID: 0000-0002-1526-0863

Dasapta Erwin Irawan

July 26, 2016
Tweet

More Decks by Dasapta Erwin Irawan

Other Decks in Education

Transcript

  1. [RNW-­‐104]   Understanding  north  Java  coastal  aquifer  system  :  

    evidence  from  Kendal,  Mid  Java   Lukman,  A.  (1),  Aryanto,  M.  D.  (2),  Pramudito,  A.  (2),  Andhika,  A.  (2),  and   Irawan,  D.  E.  (1*)   (1)  Faculty  of  Earth  Sciences  and  Technology,  InsFtutu  Teknologi  Bandung   (2)  PT.  Supra  Indodrill  Indonesia     *  [email protected]       26th  July  2016,  East  Hall,  ITB  
  2. Background  and  LocaGon   •  Northern  part  of  java  is

     a   favorable  place  for   economical  acFvity  due  to  its   strategic  locaFon   •  RelaFvely  flat  topography   and  the  existant  of  abundant   transportaFon  access  makes   it  easier  to  be  built   •  The  probable  increasing   development  acFvity  needs   to  be  anFcipated    with   learning  the  groundwater   resource  study  and  research  
  3. regional     physiography   •  Alluvial  plain  with  

    flat  topography  and   influence  of  Fdes   •  Land  used  for   “empang”  (brackish   fishpond)  
  4. geoelectric   method   Where : K = Geometrical factor

    AB = Distance between current electrodes (m) MN = Distance between potential electrodes (m) V = Potential (mV) I = Electrical Current (mA) = Apparent Resistivity (m.Ohm) ρ Telford and Sheriff, 1990  
  5. •  Aluvial  Deposite  (Qa)  à  coastal   environment,  consist  of

     clay  and   sand  deposit  with  average   thickness  around  >  50  m.   •  Damar  FormaFon  (Qtd)  à  tuff,   volcanic  breccia,  sandy  tuff  à  main   aquifer   regional   geology   Thaden et al., 1975  
  6. soil  test  result   •  Dominant  clay  layer   Fll

     70  m  of  depth   •  The  clay  layers  are   from  aluvial  deposit   •  Loose  /  not   consolidated   •  Shallow  groundwater   table  around  0,3-­‐2  m   contain  brackish   water  
  7. Discharge  EsGmaGon   Dominico and Schwartz, 1990   Sichardt formula,

    1990   Qmaks = maximum discharge of water extracted (m3/s) re = effective radius (m) b = aquifer thickness (m) k = hydraulic conductivity Assumption : -  Aquifer Thickness is 70 meter -  Effective radius is 10 meter -  Hydraulic conductivity value 3.10-10m/sec and 6.10-6 m/sec Hydraulic   ConducGvity Q  (m3/s) Q  (l/s) 3.10-­‐10  m/sec 0.005076 5.076 6.10-­‐6  m/sec 0.071786 71.786 The different value of discharge depends on the following conditions: -  Porosity and permeability rate of aquifer. -  Fragment size of sandstone -  Matrix precentage of the sandstone.
  8. conclusion   •  From the correlation between literature, previous borehole

    and field measurement data, it is known that there are four layers identified, the first layer is silty clay with resistivity values vary ​​ between 0 - 10 ohm.m, then the second layer is tuffaceous claystone with resistivity value between 10 - 60 ohm.m, both of this layer is interpreted as an impermeable layer. The third layer is sandy tuff with resistivity value ranged between 60 - 100 ohm.m and the last layer is compact breccia with resistivity value more than 100 ohm.m. •  There is two system of aquifer in research location : shallow aquifer (0-70 m), deep aquifer (70-150 m) •  Shallow aquifer contain brackish water as result of seawater intrusion •  Recommended depth for screen : 70-150 meter •  Interval 0-70 m must be sealed with casing and cement to preventing brackish water entering the well. •  Discharge estimation recharge result : Hydraulic  ConducGvity Q  (m3/s) Q  (l/s) 3.10-­‐10  m/sec 0.005076 5.076 6.10-­‐6  m/sec 0.071786 71.786