Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The Walking Dead - A Survival Guide to Resilien...
Search
Michael Nitschinger
May 12, 2015
Programming
0
180
The Walking Dead - A Survival Guide to Resilient Reactive Applications
I gave this talk at GeeCon 2015 in Krakow. Recording will be available through the GeeCon channels.
Michael Nitschinger
May 12, 2015
Tweet
Share
More Decks by Michael Nitschinger
See All by Michael Nitschinger
High Performance JVM Networking with Netty
daschl
5
1.1k
Reactive Data Access with RxJava... and N1QL!
daschl
0
170
Spark with Couchbase
daschl
0
140
Reactive Data Access with RxJava ... and N1QL!
daschl
0
170
State of the Art JVM Networking with Netty
daschl
2
430
The Walking Dead - A Survival Guide to Resilient Reactive Applications
daschl
0
350
The Walking Dead - A Survival Guide to Resilient Reactive Applications
daschl
1
420
The Walking Dead - A Survival Guide to Resilient Applications
daschl
0
1.2k
Building a Reactive Database Driver on the JVM
daschl
2
930
Other Decks in Programming
See All in Programming
Full stack testing :: basic to basic
up1
1
930
快速入門可觀測性
blueswen
0
330
プロダクトの品質に コミットする / Commit to Product Quality
pekepek
2
770
創造的活動から切り拓く新たなキャリア 好きから始めてみる夜勤オペレーターからSREへの転身
yjszk
1
130
Scalaから始めるOpenFeature入門 / Scalaわいわい勉強会 #4
arthur1
1
300
良いユニットテストを書こう
mototakatsu
5
1.9k
42 best practices for Symfony, a decade later
tucksaun
1
180
あれやってみてー駆動から成長を加速させる / areyattemite-driven
nashiusagi
1
200
14 Years of iOS: Lessons and Key Points
seyfoyun
1
770
数十万行のプロジェクトを Scala 2から3に完全移行した
xuwei_k
0
260
CSC509 Lecture 14
javiergs
PRO
0
130
fs2-io を試してたらバグを見つけて直した話
chencmd
0
220
Featured
See All Featured
Rebuilding a faster, lazier Slack
samanthasiow
79
8.7k
Six Lessons from altMBA
skipperchong
27
3.5k
A Philosophy of Restraint
colly
203
16k
Fireside Chat
paigeccino
34
3.1k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
26
1.5k
Keith and Marios Guide to Fast Websites
keithpitt
410
22k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
29
2k
What's in a price? How to price your products and services
michaelherold
243
12k
Docker and Python
trallard
42
3.1k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
45
2.2k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
132
33k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
0
96
Transcript
The Walking Dead A Survival Guide to Resilient Reactive Applications
Michael Nitschinger @daschl
the right Mindset 2
– U.S. Marine Corps “The more you sweat in peace,
the less you bleed in war.” 3
4
5
Not so fast, mister fancy tests! 6
What can go wrong? Always ask yourself 7
Fault Tolerance 101 8
Fault Error Failure A fault is a latent defect that
can cause an error when activated. 9
Fault Error Failure Errors are the manifestations of faults. 10
Fault Error Failure Failure occurs when the service no longer
complies with its specifications. 11
Fault Error Failure Errors are inevitable. We need to detect,
recover and mitigate them before they become failures. 12
Reliability is the probability that a system will perform failure
free for a given amount of time. MTTF Mean Time To Failure MTTR Mean Time To Repair 13
Availability is the percentage of time the system is able
to perform its function. availability = MTTF MTTF + MTTR 14
Expression Downtime/Year Three 9s 99.9% 525.6 min Four 9s 99.99%
52.56 min Four 9s and a 5 99.995% 26.28 min Five 9s 99.999% 5.256 min Six 9s 99.9999% 0.5256 min 100% 0 15
Pop Quiz! Edge Service User Service Session Store Data Warehouse
Wanted: 99.99% Availability ??? ??? ??? 16
Pop Quiz! Edge Service User Service Session Store Data Warehouse
Wanted: 99.99% Availability 99.99% 17 99.99% 99.99%
Pop Quiz! Edge Service User Service Session Store Data Warehouse
Wanted: 99.99% Availability ~99.999% ~99.999% ~99.999% 18
Fault Tolerant Architecture 19
Units of Mitigation are the basic units of error containment
and recovery. 20
Escalation is used when recovery or mitigation is not possible
inside the unit. 21
Escalation 22 Cluster Node Node Service Service Service Service Service
Endpoint Endpoint Endpoint Endpoint Endpoint
Escalation 23 Cluster Node Node Service Service Service Service Service
Endpoint Endpoint Endpoint Endpoint Endpoint
Escalation 24 Cluster Node Node Service Service Service Service Service
Endpoint Endpoint Endpoint Endpoint Endpoint
Escalation 25 Cluster Node Node Service Service Service Service Service
Endpoint Endpoint Endpoint Endpoint Endpoint
Redundancy Cost Active/Active Active/Standby N+M Active/Passive Cost Time To Recover
26
The Fault Observer receives system and error events and can
guide and orchestrate detection and recovery Unit Unit Observer Listener Listener Unit Unit 27
28
29
Detecting Errors 30
A silent system is a dead system. 31
A System Monitor helps to study behaviour and to make
sure it is operating as specified. http://upload.wikimedia.org/wikipedia/commons/3/3b/Mission_control_center.jpg 32
https://github.com/Netflix/Turbine 33
Periodic Checking Heartbeats monitor tasks or remote services and initiate
recovery Routine Exercises prevent idle unit starvation and surface malfunctions 34
35 Encoder( Encoder( Ne*y( Writes( Ne*y( Reads( Decoder( Decoder( Event
on Idle No Traffic Endpoint
Riding over Transients is used to defer error recovery if
the error is temporary. “‘Patience is a virtue’ to allow the true signature of an error to show itself.” - Robert S. Hanmer 36
37
And more! • Complete Parameter Checking • Watchdogs • Voting
• Checksums • Routine Audits 38
Recovery and Mitigation of Errors 39
Timeout to not wait forever and keep holding up the
resource. 40 X
Failover to a redundant unit when the error has been
detected and isolated. Cost Active/Active Active/Standby N+M Cost Time To Recover Redundancy Reminder 41
Intelligent Retries Time between Retries Number of Attempts Fixed Linear
Exponential 42
Restart can be used as a last resort with the
trade-off to lose state and time. 43
Fail Fast to shed load and give a partial great
service than a complete bad one. Boundary 44
Backpressure & Batching! 45
Case Study: Hystrix https://raw.githubusercontent.com/wiki/Netflix/Hystrix/images/hystrix-flow-chart-original.png 46
And more! • Rollback • Roll-Forward • Checkpoints • Data
Reset Recovery Mitigation • Bounded Queuing • Expansive Controls • Marking Data • Error Correcting Codes 47
And more! • Rollback • Roll-Forward • Checkpoints • Data
Reset Recovery Mitigation • Bounded Queuing • Expansive Controls • Marking Data • Error Correcting Codes 48
Recommended Reading 49
Patterns for Fault-Tolerant Software by Robert S. Hanmer 50
Release It! by Michael T. Nygard 51
Any Questions? 52
twitter @daschl email
[email protected]
Thank you! 53