Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ACM RecSys 2012: Recommender Systems, Today
Search
Data Science London
October 10, 2012
Technology
2
1.9k
ACM RecSys 2012: Recommender Systems, Today
Neal Lathia @Cambridge_Uni talk at @ds_dln #strataconf 02/10/12
Data Science London
October 10, 2012
Tweet
Share
More Decks by Data Science London
See All by Data Science London
Semi-Supervised Anomaly Detection
datasciencelondon
0
1k
Hacking the Rail: Ingesting, analysing & visualising realtime streaming data
datasciencelondon
1
47k
Stateful Data-Parallel Processing
datasciencelondon
0
47k
Semantic web warmed up: Ontologies for the IoT
datasciencelondon
0
130
IoT data ingestion pipelines and Clojure transducers
datasciencelondon
0
280
TrendCalculus: A data science for trends
datasciencelondon
1
48k
Data Science in Mobile Health
datasciencelondon
1
8.3k
Large-scale Recommender Systems on Just a PC (with GraphChi)
datasciencelondon
1
17k
Taming Graph Dynamics at Scale
datasciencelondon
0
8.1k
Other Decks in Technology
See All in Technology
TROCCO 2025年の進化をデモで振り返る
__allllllllez__
0
260
インフラ室事例集
mixi_engineers
PRO
2
180
AI駆動開発によるDDDの実践
dip_tech
PRO
0
200
adk-samples に学ぶデータ分析 LLM エージェント開発
na0
3
1.2k
【5分でわかる】セーフィー エンジニア向け会社紹介
safie_recruit
0
37k
Contract One Engineering Unit 紹介資料
sansan33
PRO
0
9.8k
段階的に進める、 挫折しない自宅サーバ入門
yu_kod
5
2.1k
小規模チームによる衛星管制システムの開発とスケーラビリティの実現
sankichi92
0
180
ローカルVLM OCRモデル + Gemini 3.0 Proで日本語性能を試す
gotalab555
1
260
Product Engineer
resilire
0
110
MAP-7thplaceSolution
yukichi0403
2
230
Databricksによるエージェント構築
taka_aki
1
100
Featured
See All Featured
Become a Pro
speakerdeck
PRO
30
5.7k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.3k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
690
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.5k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.8k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
The Pragmatic Product Professional
lauravandoore
37
7k
Code Review Best Practice
trishagee
73
19k
How to train your dragon (web standard)
notwaldorf
97
6.4k
GitHub's CSS Performance
jonrohan
1032
470k
Transcript
acm recsys 2012: recommender systems, today @neal_lathia
warning: daunting task lookout for twitter handles
why #recsys? information overload mailing lists; usenet news (1992) see:
@jkonstan, @presnick
why #recsys? information overload filter failure movies; books; music (~1995)
why #recsys? information overload filter failure creating value advertising; engagement;
connection (today)
@dtunkelang
(1) collaborative “based on the premise that people looking for
information should be able to make use of what others have already found and evaluated” (maltz & ehrlick)
(2) query-less “in September 2010 Schmidt said that one day
the combination of cloud computing and mobile phones would allow Google to pass on information to users without them even typing in search queries”
(3) discovery engines “we are leaving the age of information
and entering the age of recommendation” (anderson)
None
None
input: ratings, clicks, views users → items process: SVD, kNN,
RBM, etc. f(user, item) → prediction ~ rating output: prediction-ranked recommendations measure: |prediction – rating| (prediction – rating)2
traditional problems accuracy, scalability, distributed computation, similarity, cold-start, … (don't
reinvent the wheel)
acm recsys 2012: 5 open problems
problem 1: predictions temporality, multiple co-occurring objectives: diversity, novelty, freshness,
serendipity, explainability
None
problem 2: algorithms more algorithms vs. more data vs. more
rating effort
what is your algorithm doing? f(user, item) → R f(user,
item 1 , item 2 ) → R f(user, [item 1 ...item n ]) → R e.g., @alexk_z @abellogin
problem 3: users + ratings signals, context, groups, intents, interfaces
@xamat
problem 4: items lifestyle, behaviours, decisions, processes, software development
@presnick
problem 5: measurement ranking metrics vs. usability testing vs. A/B
testing
Online Controlled Experiments: Introduction, Learnings, and Humbling Statistics http://www.exp-platform.com/Pages/2012RecSys.aspx
3 key lessons
lesson 1: #recsys is an ensemble ...of disciplines statistics, machine
learning, human-computer interaction, social network analysis, psychology
lesson 2: return to the domain user effort, generative models,
cost of a freakommendation, value you seek to create
@plamere
lesson 3: join the #recsys community learn, build, research, deploy:
@MyMediaLite, @LensKitRS @zenogantner, @elehack contribute, read: #recsyswiki, @alansaid
recommender systems, today @neal_lathia