Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ACM RecSys 2012: Recommender Systems, Today
Search
Data Science London
October 10, 2012
Technology
2
1.9k
ACM RecSys 2012: Recommender Systems, Today
Neal Lathia @Cambridge_Uni talk at @ds_dln #strataconf 02/10/12
Data Science London
October 10, 2012
Tweet
Share
More Decks by Data Science London
See All by Data Science London
Semi-Supervised Anomaly Detection
datasciencelondon
0
1.1k
Hacking the Rail: Ingesting, analysing & visualising realtime streaming data
datasciencelondon
1
47k
Stateful Data-Parallel Processing
datasciencelondon
0
47k
Semantic web warmed up: Ontologies for the IoT
datasciencelondon
0
130
IoT data ingestion pipelines and Clojure transducers
datasciencelondon
0
280
TrendCalculus: A data science for trends
datasciencelondon
1
48k
Data Science in Mobile Health
datasciencelondon
1
8.3k
Large-scale Recommender Systems on Just a PC (with GraphChi)
datasciencelondon
1
17k
Taming Graph Dynamics at Scale
datasciencelondon
0
8.1k
Other Decks in Technology
See All in Technology
New Relic 1 年生の振り返りと Cloud Cost Intelligence について #NRUG
play_inc
0
230
オープンソースKeycloakのMCP認可サーバの仕様の対応状況 / 20251219 OpenID BizDay #18 LT Keycloak
oidfj
0
160
Amazon Bedrock Knowledge Bases × メタデータ活用で実現する検証可能な RAG 設計
tomoaki25
6
2.3k
ハッカソンから社内プロダクトへ AIエージェント ko☆shi 開発で学んだ4つの重要要素
leveragestech
0
120
AIBuildersDay_track_A_iidaxs
iidaxs
4
1.3k
Bedrock AgentCore Evaluationsで学ぶLLM as a judge入門
shichijoyuhi
2
240
ExpoのインダストリーブースでみたAWSが見せる製造業の未来
hamadakoji
0
190
ペアーズにおけるAIエージェント 基盤とText to SQLツールの紹介
hisamouna
2
1.6k
たまに起きる外部サービスの障害に備えたり備えなかったりする話
egmc
0
400
re:Invent2025 3つの Frontier Agents を紹介 / introducing-3-frontier-agents
tomoki10
0
400
ソフトウェアエンジニアとAIエンジニアの役割分担についてのある事例
kworkdev
PRO
0
220
【開発を止めるな】機能追加と並行して進めるアーキテクチャ改善/Keep Shipping: Architecture Improvements Without Pausing Dev
bitkey
PRO
1
130
Featured
See All Featured
How to Build an AI Search Optimization Roadmap - Criteria and Steps to Take #SEOIRL
aleyda
1
1.8k
Leo the Paperboy
mayatellez
0
1.3k
The Invisible Side of Design
smashingmag
302
51k
Site-Speed That Sticks
csswizardry
13
1k
Game over? The fight for quality and originality in the time of robots
wayneb77
1
66
Thoughts on Productivity
jonyablonski
73
5k
The Spectacular Lies of Maps
axbom
PRO
1
400
The agentic SEO stack - context over prompts
schlessera
0
560
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
Data-driven link building: lessons from a $708K investment (BrightonSEO talk)
szymonslowik
1
850
BBQ
matthewcrist
89
9.9k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
Transcript
acm recsys 2012: recommender systems, today @neal_lathia
warning: daunting task lookout for twitter handles
why #recsys? information overload mailing lists; usenet news (1992) see:
@jkonstan, @presnick
why #recsys? information overload filter failure movies; books; music (~1995)
why #recsys? information overload filter failure creating value advertising; engagement;
connection (today)
@dtunkelang
(1) collaborative “based on the premise that people looking for
information should be able to make use of what others have already found and evaluated” (maltz & ehrlick)
(2) query-less “in September 2010 Schmidt said that one day
the combination of cloud computing and mobile phones would allow Google to pass on information to users without them even typing in search queries”
(3) discovery engines “we are leaving the age of information
and entering the age of recommendation” (anderson)
None
None
input: ratings, clicks, views users → items process: SVD, kNN,
RBM, etc. f(user, item) → prediction ~ rating output: prediction-ranked recommendations measure: |prediction – rating| (prediction – rating)2
traditional problems accuracy, scalability, distributed computation, similarity, cold-start, … (don't
reinvent the wheel)
acm recsys 2012: 5 open problems
problem 1: predictions temporality, multiple co-occurring objectives: diversity, novelty, freshness,
serendipity, explainability
None
problem 2: algorithms more algorithms vs. more data vs. more
rating effort
what is your algorithm doing? f(user, item) → R f(user,
item 1 , item 2 ) → R f(user, [item 1 ...item n ]) → R e.g., @alexk_z @abellogin
problem 3: users + ratings signals, context, groups, intents, interfaces
@xamat
problem 4: items lifestyle, behaviours, decisions, processes, software development
@presnick
problem 5: measurement ranking metrics vs. usability testing vs. A/B
testing
Online Controlled Experiments: Introduction, Learnings, and Humbling Statistics http://www.exp-platform.com/Pages/2012RecSys.aspx
3 key lessons
lesson 1: #recsys is an ensemble ...of disciplines statistics, machine
learning, human-computer interaction, social network analysis, psychology
lesson 2: return to the domain user effort, generative models,
cost of a freakommendation, value you seek to create
@plamere
lesson 3: join the #recsys community learn, build, research, deploy:
@MyMediaLite, @LensKitRS @zenogantner, @elehack contribute, read: #recsyswiki, @alansaid
recommender systems, today @neal_lathia