Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ACM RecSys 2012: Recommender Systems, Today
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
Data Science London
October 10, 2012
Technology
2
1.9k
ACM RecSys 2012: Recommender Systems, Today
Neal Lathia @Cambridge_Uni talk at @ds_dln #strataconf 02/10/12
Data Science London
October 10, 2012
Tweet
Share
More Decks by Data Science London
See All by Data Science London
Semi-Supervised Anomaly Detection
datasciencelondon
0
1.1k
Hacking the Rail: Ingesting, analysing & visualising realtime streaming data
datasciencelondon
1
47k
Stateful Data-Parallel Processing
datasciencelondon
0
47k
Semantic web warmed up: Ontologies for the IoT
datasciencelondon
0
130
IoT data ingestion pipelines and Clojure transducers
datasciencelondon
0
290
TrendCalculus: A data science for trends
datasciencelondon
1
48k
Data Science in Mobile Health
datasciencelondon
1
8.3k
Large-scale Recommender Systems on Just a PC (with GraphChi)
datasciencelondon
1
17k
Taming Graph Dynamics at Scale
datasciencelondon
0
8.1k
Other Decks in Technology
See All in Technology
Amazon Bedrock AgentCore 認証・認可入門
hironobuiga
1
340
[Iceberg Meetup #4] ゼロからはじめる: Apache Icebergとはなにか? / Apache Iceberg for Beginners
databricksjapan
0
510
SREの仕事を自動化する際にやっておきたい5つのポイント
jacopen
6
1.1k
新規事業 toitta におけるAI 機能評価の話 / AI Feature Evaluation in toitta
pokutuna
0
280
AI推進者の視点で見る、Bill OneのAI活用の今
sansantech
PRO
1
190
【northernforce#54】SalesforceにおけるAgentforceの位置づけ・事例紹介
yutosatou_kit
0
130
持続可能な開発のためのミニマリズム
sansantech
PRO
4
590
ビジュアルプログラミングIoTLT vol.22
1ftseabass
PRO
0
140
【5分でわかる】セーフィー エンジニア向け会社紹介
safie_recruit
0
41k
一番人に近いコードレビューア CodeRabbit
kinopeee
0
110
DEVCON 14 Report at AAMSX RU65: V9968, MSX0tab5, MSXDIY etc
mcd500
0
230
DatabricksホストモデルでAIコーディング環境を構築する
databricksjapan
0
190
Featured
See All Featured
Ten Tips & Tricks for a 🌱 transition
stuffmc
0
57
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
The Cult of Friendly URLs
andyhume
79
6.8k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
Prompt Engineering for Job Search
mfonobong
0
150
Reflections from 52 weeks, 52 projects
jeffersonlam
356
21k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
14k
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
300
brightonSEO & MeasureFest 2025 - Christian Goodrich - Winning strategies for Black Friday CRO & PPC
cargoodrich
3
90
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
60
Data-driven link building: lessons from a $708K investment (BrightonSEO talk)
szymonslowik
1
900
The #1 spot is gone: here's how to win anyway
tamaranovitovic
2
920
Transcript
acm recsys 2012: recommender systems, today @neal_lathia
warning: daunting task lookout for twitter handles
why #recsys? information overload mailing lists; usenet news (1992) see:
@jkonstan, @presnick
why #recsys? information overload filter failure movies; books; music (~1995)
why #recsys? information overload filter failure creating value advertising; engagement;
connection (today)
@dtunkelang
(1) collaborative “based on the premise that people looking for
information should be able to make use of what others have already found and evaluated” (maltz & ehrlick)
(2) query-less “in September 2010 Schmidt said that one day
the combination of cloud computing and mobile phones would allow Google to pass on information to users without them even typing in search queries”
(3) discovery engines “we are leaving the age of information
and entering the age of recommendation” (anderson)
None
None
input: ratings, clicks, views users → items process: SVD, kNN,
RBM, etc. f(user, item) → prediction ~ rating output: prediction-ranked recommendations measure: |prediction – rating| (prediction – rating)2
traditional problems accuracy, scalability, distributed computation, similarity, cold-start, … (don't
reinvent the wheel)
acm recsys 2012: 5 open problems
problem 1: predictions temporality, multiple co-occurring objectives: diversity, novelty, freshness,
serendipity, explainability
None
problem 2: algorithms more algorithms vs. more data vs. more
rating effort
what is your algorithm doing? f(user, item) → R f(user,
item 1 , item 2 ) → R f(user, [item 1 ...item n ]) → R e.g., @alexk_z @abellogin
problem 3: users + ratings signals, context, groups, intents, interfaces
@xamat
problem 4: items lifestyle, behaviours, decisions, processes, software development
@presnick
problem 5: measurement ranking metrics vs. usability testing vs. A/B
testing
Online Controlled Experiments: Introduction, Learnings, and Humbling Statistics http://www.exp-platform.com/Pages/2012RecSys.aspx
3 key lessons
lesson 1: #recsys is an ensemble ...of disciplines statistics, machine
learning, human-computer interaction, social network analysis, psychology
lesson 2: return to the domain user effort, generative models,
cost of a freakommendation, value you seek to create
@plamere
lesson 3: join the #recsys community learn, build, research, deploy:
@MyMediaLite, @LensKitRS @zenogantner, @elehack contribute, read: #recsyswiki, @alansaid
recommender systems, today @neal_lathia