Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ACM RecSys 2012: Recommender Systems, Today
Search
Data Science London
October 10, 2012
Technology
2
1.9k
ACM RecSys 2012: Recommender Systems, Today
Neal Lathia @Cambridge_Uni talk at @ds_dln #strataconf 02/10/12
Data Science London
October 10, 2012
Tweet
Share
More Decks by Data Science London
See All by Data Science London
Semi-Supervised Anomaly Detection
datasciencelondon
0
1k
Hacking the Rail: Ingesting, analysing & visualising realtime streaming data
datasciencelondon
1
47k
Stateful Data-Parallel Processing
datasciencelondon
0
47k
Semantic web warmed up: Ontologies for the IoT
datasciencelondon
0
130
IoT data ingestion pipelines and Clojure transducers
datasciencelondon
0
280
TrendCalculus: A data science for trends
datasciencelondon
1
48k
Data Science in Mobile Health
datasciencelondon
1
8.3k
Large-scale Recommender Systems on Just a PC (with GraphChi)
datasciencelondon
1
17k
Taming Graph Dynamics at Scale
datasciencelondon
0
8.1k
Other Decks in Technology
See All in Technology
ラスベガスの歩き方 2025年版(re:Invent 事前勉強会)
junjikoide
0
640
AWS DMS で SQL Server を移行してみた/aws-dms-sql-server-migration
emiki
0
270
AWSが好きすぎて、41歳でエンジニアになり、AAIを経由してAWSパートナー企業に入った話
yama3133
2
210
DMMの検索システムをSolrからElasticCloudに移行した話
hmaa_ryo
0
290
Zero Trust DNS でより安全なインターネット アクセス
murachiakira
0
130
SREのキャリアから経営に近づく - Enterprise Risk Managementを基に -
shonansurvivors
1
500
OTEPsで知るOpenTelemetryの未来 / Observability Conference Tokyo 2025
arthur1
0
350
ゼロコード計装導入後のカスタム計装でさらに可観測性を高めよう
sansantech
PRO
1
580
SOTA競争から人間を超える画像認識へ
shinya7y
0
640
プロダクト開発と社内データ活用での、BI×AIの現在地 / Data_Findy
sansan_randd
1
690
DSPy入門
tomehirata
6
740
OPENLOGI Company Profile for engineer
hr01
1
46k
Featured
See All Featured
Music & Morning Musume
bryan
46
6.9k
The Language of Interfaces
destraynor
162
25k
The Invisible Side of Design
smashingmag
302
51k
Thoughts on Productivity
jonyablonski
71
4.9k
Agile that works and the tools we love
rasmusluckow
331
21k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
4 Signs Your Business is Dying
shpigford
186
22k
Faster Mobile Websites
deanohume
310
31k
The Cult of Friendly URLs
andyhume
79
6.6k
Producing Creativity
orderedlist
PRO
348
40k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
Become a Pro
speakerdeck
PRO
29
5.6k
Transcript
acm recsys 2012: recommender systems, today @neal_lathia
warning: daunting task lookout for twitter handles
why #recsys? information overload mailing lists; usenet news (1992) see:
@jkonstan, @presnick
why #recsys? information overload filter failure movies; books; music (~1995)
why #recsys? information overload filter failure creating value advertising; engagement;
connection (today)
@dtunkelang
(1) collaborative “based on the premise that people looking for
information should be able to make use of what others have already found and evaluated” (maltz & ehrlick)
(2) query-less “in September 2010 Schmidt said that one day
the combination of cloud computing and mobile phones would allow Google to pass on information to users without them even typing in search queries”
(3) discovery engines “we are leaving the age of information
and entering the age of recommendation” (anderson)
None
None
input: ratings, clicks, views users → items process: SVD, kNN,
RBM, etc. f(user, item) → prediction ~ rating output: prediction-ranked recommendations measure: |prediction – rating| (prediction – rating)2
traditional problems accuracy, scalability, distributed computation, similarity, cold-start, … (don't
reinvent the wheel)
acm recsys 2012: 5 open problems
problem 1: predictions temporality, multiple co-occurring objectives: diversity, novelty, freshness,
serendipity, explainability
None
problem 2: algorithms more algorithms vs. more data vs. more
rating effort
what is your algorithm doing? f(user, item) → R f(user,
item 1 , item 2 ) → R f(user, [item 1 ...item n ]) → R e.g., @alexk_z @abellogin
problem 3: users + ratings signals, context, groups, intents, interfaces
@xamat
problem 4: items lifestyle, behaviours, decisions, processes, software development
@presnick
problem 5: measurement ranking metrics vs. usability testing vs. A/B
testing
Online Controlled Experiments: Introduction, Learnings, and Humbling Statistics http://www.exp-platform.com/Pages/2012RecSys.aspx
3 key lessons
lesson 1: #recsys is an ensemble ...of disciplines statistics, machine
learning, human-computer interaction, social network analysis, psychology
lesson 2: return to the domain user effort, generative models,
cost of a freakommendation, value you seek to create
@plamere
lesson 3: join the #recsys community learn, build, research, deploy:
@MyMediaLite, @LensKitRS @zenogantner, @elehack contribute, read: #recsyswiki, @alansaid
recommender systems, today @neal_lathia