Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ACM RecSys 2012: Recommender Systems, Today
Search
Data Science London
October 10, 2012
Technology
2
1.9k
ACM RecSys 2012: Recommender Systems, Today
Neal Lathia @Cambridge_Uni talk at @ds_dln #strataconf 02/10/12
Data Science London
October 10, 2012
Tweet
Share
More Decks by Data Science London
See All by Data Science London
Semi-Supervised Anomaly Detection
datasciencelondon
0
1k
Hacking the Rail: Ingesting, analysing & visualising realtime streaming data
datasciencelondon
1
47k
Stateful Data-Parallel Processing
datasciencelondon
0
47k
Semantic web warmed up: Ontologies for the IoT
datasciencelondon
0
130
IoT data ingestion pipelines and Clojure transducers
datasciencelondon
0
280
TrendCalculus: A data science for trends
datasciencelondon
1
48k
Data Science in Mobile Health
datasciencelondon
1
8.3k
Large-scale Recommender Systems on Just a PC (with GraphChi)
datasciencelondon
1
17k
Taming Graph Dynamics at Scale
datasciencelondon
0
8.1k
Other Decks in Technology
See All in Technology
バイブスに「型」を!Kent Beckに学ぶ、AI時代のテスト駆動開発
amixedcolor
2
580
研究開発と製品開発、両利きのロボティクス
youtalk
1
530
AIをプライベートや業務で使ってみよう!効果的な認定資格の活かし方
fukazawashun
0
100
LLMを搭載したプロダクトの品質保証の模索と学び
qa
0
1.1k
DDD集約とサービスコンテキスト境界との関係性
pandayumi
3
290
ハードウェアとソフトウェアをつなぐ全てを内製している企業の E2E テストの作り方 / How to create E2E tests for a company that builds everything connecting hardware and software in-house
bitkey
PRO
1
160
AIエージェントで90秒の広告動画を制作!台本・音声・映像・編集をつなぐAWS最新アーキテクチャの実践
nasuvitz
2
270
JTCにおける内製×スクラム開発への挑戦〜内製化率95%達成の舞台裏/JTC's challenge of in-house development with Scrum
aeonpeople
0
250
react-callを使ってダイヤログをいろんなとこで再利用しよう!
shinaps
2
260
複数サービスを支えるマルチテナント型Batch MLプラットフォーム
lycorptech_jp
PRO
1
790
人工衛星のファームウェアをRustで書く理由
koba789
15
8.2k
サラリーマンの小遣いで作るtoCサービス - Cloudflare Workersでスケールする開発戦略
shinaps
2
470
Featured
See All Featured
The Cult of Friendly URLs
andyhume
79
6.6k
How GitHub (no longer) Works
holman
315
140k
Bash Introduction
62gerente
615
210k
Docker and Python
trallard
46
3.6k
Visualization
eitanlees
148
16k
Being A Developer After 40
akosma
90
590k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.1k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
30
9.7k
Site-Speed That Sticks
csswizardry
10
820
Building Flexible Design Systems
yeseniaperezcruz
329
39k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.6k
It's Worth the Effort
3n
187
28k
Transcript
acm recsys 2012: recommender systems, today @neal_lathia
warning: daunting task lookout for twitter handles
why #recsys? information overload mailing lists; usenet news (1992) see:
@jkonstan, @presnick
why #recsys? information overload filter failure movies; books; music (~1995)
why #recsys? information overload filter failure creating value advertising; engagement;
connection (today)
@dtunkelang
(1) collaborative “based on the premise that people looking for
information should be able to make use of what others have already found and evaluated” (maltz & ehrlick)
(2) query-less “in September 2010 Schmidt said that one day
the combination of cloud computing and mobile phones would allow Google to pass on information to users without them even typing in search queries”
(3) discovery engines “we are leaving the age of information
and entering the age of recommendation” (anderson)
None
None
input: ratings, clicks, views users → items process: SVD, kNN,
RBM, etc. f(user, item) → prediction ~ rating output: prediction-ranked recommendations measure: |prediction – rating| (prediction – rating)2
traditional problems accuracy, scalability, distributed computation, similarity, cold-start, … (don't
reinvent the wheel)
acm recsys 2012: 5 open problems
problem 1: predictions temporality, multiple co-occurring objectives: diversity, novelty, freshness,
serendipity, explainability
None
problem 2: algorithms more algorithms vs. more data vs. more
rating effort
what is your algorithm doing? f(user, item) → R f(user,
item 1 , item 2 ) → R f(user, [item 1 ...item n ]) → R e.g., @alexk_z @abellogin
problem 3: users + ratings signals, context, groups, intents, interfaces
@xamat
problem 4: items lifestyle, behaviours, decisions, processes, software development
@presnick
problem 5: measurement ranking metrics vs. usability testing vs. A/B
testing
Online Controlled Experiments: Introduction, Learnings, and Humbling Statistics http://www.exp-platform.com/Pages/2012RecSys.aspx
3 key lessons
lesson 1: #recsys is an ensemble ...of disciplines statistics, machine
learning, human-computer interaction, social network analysis, psychology
lesson 2: return to the domain user effort, generative models,
cost of a freakommendation, value you seek to create
@plamere
lesson 3: join the #recsys community learn, build, research, deploy:
@MyMediaLite, @LensKitRS @zenogantner, @elehack contribute, read: #recsyswiki, @alansaid
recommender systems, today @neal_lathia