Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ACM RecSys 2012: Recommender Systems, Today
Search
Data Science London
October 10, 2012
Technology
2
1.9k
ACM RecSys 2012: Recommender Systems, Today
Neal Lathia @Cambridge_Uni talk at @ds_dln #strataconf 02/10/12
Data Science London
October 10, 2012
Tweet
Share
More Decks by Data Science London
See All by Data Science London
Semi-Supervised Anomaly Detection
datasciencelondon
0
980
Hacking the Rail: Ingesting, analysing & visualising realtime streaming data
datasciencelondon
1
47k
Stateful Data-Parallel Processing
datasciencelondon
0
47k
Semantic web warmed up: Ontologies for the IoT
datasciencelondon
0
130
IoT data ingestion pipelines and Clojure transducers
datasciencelondon
0
270
TrendCalculus: A data science for trends
datasciencelondon
1
48k
Data Science in Mobile Health
datasciencelondon
1
8.3k
Large-scale Recommender Systems on Just a PC (with GraphChi)
datasciencelondon
1
17k
Taming Graph Dynamics at Scale
datasciencelondon
0
8.1k
Other Decks in Technology
See All in Technology
ObsidianをMCP連携させてみる
ttnyt8701
2
140
原則から考える保守しやすいComposable関数設計
moriatsushi
3
500
CIでのgolangci-lintの実行を約90%削減した話
kazukihayase
0
340
20250625 Snowflake Summit 2025活用事例 レポート / Nowcast Snowflake Summit 2025 Case Study Report
kkuv
1
200
UIテスト自動化サポート- Testbed for XCUIAutomation practice
notoroid
0
110
Agentic DevOps時代の生存戦略
kkamegawa
0
950
Azure AI Foundryでマルチエージェントワークフロー
seosoft
0
150
25分で解説する「最小権限の原則」を実現するための AWS「ポリシー」大全
opelab
9
2.2k
(非公式) AWS Summit Japan と 海浜幕張 の歩き方 2025年版
coosuke
PRO
1
330
監視のこれまでとこれから/sakura monitoring seminar 2025
fujiwara3
10
2.9k
AIエージェントの継続的改善のためオブザーバビリティ
pharma_x_tech
6
1.4k
成立するElixirの再束縛(再代入)可という選択
kubell_hr
0
870
Featured
See All Featured
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
8
660
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
A Tale of Four Properties
chriscoyier
159
23k
Site-Speed That Sticks
csswizardry
10
650
GraphQLとの向き合い方2022年版
quramy
46
14k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
228
22k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.5k
Docker and Python
trallard
44
3.4k
The Language of Interfaces
destraynor
158
25k
Building Applications with DynamoDB
mza
95
6.5k
[RailsConf 2023] Rails as a piece of cake
palkan
55
5.6k
Visualization
eitanlees
146
16k
Transcript
acm recsys 2012: recommender systems, today @neal_lathia
warning: daunting task lookout for twitter handles
why #recsys? information overload mailing lists; usenet news (1992) see:
@jkonstan, @presnick
why #recsys? information overload filter failure movies; books; music (~1995)
why #recsys? information overload filter failure creating value advertising; engagement;
connection (today)
@dtunkelang
(1) collaborative “based on the premise that people looking for
information should be able to make use of what others have already found and evaluated” (maltz & ehrlick)
(2) query-less “in September 2010 Schmidt said that one day
the combination of cloud computing and mobile phones would allow Google to pass on information to users without them even typing in search queries”
(3) discovery engines “we are leaving the age of information
and entering the age of recommendation” (anderson)
None
None
input: ratings, clicks, views users → items process: SVD, kNN,
RBM, etc. f(user, item) → prediction ~ rating output: prediction-ranked recommendations measure: |prediction – rating| (prediction – rating)2
traditional problems accuracy, scalability, distributed computation, similarity, cold-start, … (don't
reinvent the wheel)
acm recsys 2012: 5 open problems
problem 1: predictions temporality, multiple co-occurring objectives: diversity, novelty, freshness,
serendipity, explainability
None
problem 2: algorithms more algorithms vs. more data vs. more
rating effort
what is your algorithm doing? f(user, item) → R f(user,
item 1 , item 2 ) → R f(user, [item 1 ...item n ]) → R e.g., @alexk_z @abellogin
problem 3: users + ratings signals, context, groups, intents, interfaces
@xamat
problem 4: items lifestyle, behaviours, decisions, processes, software development
@presnick
problem 5: measurement ranking metrics vs. usability testing vs. A/B
testing
Online Controlled Experiments: Introduction, Learnings, and Humbling Statistics http://www.exp-platform.com/Pages/2012RecSys.aspx
3 key lessons
lesson 1: #recsys is an ensemble ...of disciplines statistics, machine
learning, human-computer interaction, social network analysis, psychology
lesson 2: return to the domain user effort, generative models,
cost of a freakommendation, value you seek to create
@plamere
lesson 3: join the #recsys community learn, build, research, deploy:
@MyMediaLite, @LensKitRS @zenogantner, @elehack contribute, read: #recsyswiki, @alansaid
recommender systems, today @neal_lathia