Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Hybrid origins of M. floridensis

Hybrid origins of M. floridensis

10minute talk at "Evolutionary biology of Caenorhabditis and other nematodes" 2014

96e8ca061c005a42d360459d366ec923?s=128

Dave Lunt

June 15, 2014
Tweet

Transcript

  1. Dave Lunt @davelunt speakerdeck.com/davelunt slides available Georgios Koutsovoulos Mark Blaxter

    Sujai Kumar Comparative genomics of root knot nematodes: Tales of sex, hybridisation and adaptation Evolutionary Biology Group, University of Hull Institute of Evolutionary Biology, University of Edinburgh
  2. THE MELOIDOGYNE RKN SYSTEM Meloidogyne Reproduction • Mitotic parthenogens (apomixis)

    without chromosome pairs. Ancient asexuals? Asexuals- meiosis absent • Meiotic parthenogens (automixis) • Obligatory outbreeding sexuals with males & females (amphimixis) Sexuals- meiosis present Wide variety of reproductive modes in a single genus
  3. THE MELOIDOGYNE RKN SYSTEM Meloidogyne Reproduction Wide variety of reproductive

    modes in a single genus
  4. MELOIDOGYNE HYBRIDISATION Hybrid Speciation in Meloidogyne? Some previous work has

    suggested interspecific hybridisation may be involved with Meloidogyne asexual species Heliconius butterflies Lake Malawi cichlids Root knot nematodes?
  5. Is M. floridensis the parent of the asexuals? M. floridensis

    is found within the phylogenetic diversity of asexual species! It reproduces sexually by automixis! Could it be a parent of the asexual lineages via interspecific hybridisation? MELOIDOGYNE HYBRIDISATION GENOMICS M.floridensis M. ??? M. incognita M. javanica M. arenaria x apomicts parental species automict apomict apomict automict
  6. MELOIDOGYNE HYBRIDISATION GENOMICS Meloidogyne comparative genomics We have sequenced M.

    floridensis genome and compare to 2 other published Meloidogyne genomes M.floridensis M. ??? M. incognita M. javanica M. arenaria x apomicts parental species automict asexual, hybrid? sexual, parental? sexual, outgroup 100MB, 100x coverage, 15.3k protein coding loci
  7. Is M. floridensis the parent of the asexuals? 1. look

    at the within-genome patterns of diversity to determine hybrid nature of genomes! 2. look at phylogenetic relationships of all genes to study origins and parents MELOIDOGYNE HYBRIDISATION GENOMICS 1: Intra-genomic diversity 2: Phylogenomics Investigated using whole genome sequences and 2 distinct approaches;
  8. 1. INTRA-GENOMIC ANALYSES Divergence of protein-coding alleles Lunt et al

    arXiv 2013 http://arxiv.org/abs/1306.6163 Coding sequences from each species were compared to loci in the same species! The percent identity of the best match was plotted Self identity comparisons Both M. incognita and M. floridensis show evidence of presence of many duplicates, while M. hapla does not
  9. 1. INTRA-GENOMIC ANALYSES Divergence of protein-coding alleles Lunt et al

    arXiv 2013 http://arxiv.org/abs/1306.6163 Self identity comparisons Both M. incognita and M. floridensis show evidence of presence of many duplicates, while M. hapla does not This is exactly the pattern expected for hybrid genomes
  10. Is M. floridensis the parent of the asexuals? ! look

    at phylogenetic relationships of all genes to study origins and parents MELOIDOGYNE HYBRIDISATION GENOMICS 1: Intra-genomic diversity 2: Phylogenomics
  11. 11 M. hapla X Y Z M. floridensis M. incognita

    X+Y Y+Z C Scenario 4 M. hapla X Y Z M. floridensis M. incognita X+Y (X+Y)+Z D Scenario 5 M. hapla X Z M. floridensis M. incognita X X+Z B Scenario 3 Z M. incognita Z+Z 1 & 2 X+Y M. hapla X Y Z M. floridensis M. incognita X+Y Y+Z C Scenario 4 M. hapla X Y Z M. floridensis M. incognita X+Y (X+Y)+Z D Scenario 5 Z M. incognita +Z X+Y M. hapla X Y M. floridensis X+Y C Scenario 4 M. hapla X Z M. floridensis M. incognita X X+Z B Scenario 3 M. hapla X Z M. floridensis M. incognita X Z+Z A Scenario 1 & 2 M. hapla X Y Z M. floridensis M. incognita X+Y Y+Z C Scenario 4 M. hapla D M. hapla X Z M. floridensis M. incognita X X+Z B Scenario 3 M. hapla X Z M. floridensis M. incognita X Z+Z A Scenario 1 & 2 Hybridisation hypotheses A B C D We have selected a broad range of possibilities informed by prior knowledge! We have tested their predictions phylogenetically
  12. M. hapla X M. floridensis X B Scenario M. hapla

    X Z M. floridensis M. incognita X Z+Z A Scenario 1 & 2 (A)! Whole genome duplication(s)
  13. 13 M. hapla X M. floridensis X+Y C Scena M.

    hapla X Z M. floridensis M. incognita X X+Z B Scenario 3 M. incognita Z (B)! M. incognita is an interspecific hybrid with M. floridensis as one parent
  14. M. hapla X Y Z M. floridensis M. incognita X+Y

    Y+Z C Scenario 4 M. hapla X Y M. florid X+Y D Scenario X+Y (C)! M. incognita and M. floridensis are independent hybrids sharing one parent
  15. Z M. hapla X Y Z M. floridensis M. incognita

    X+Y (X+Y)+Z X+Y (D)! M. floridensis is a hybrid and M. incognita is a secondary hybrid between M. floridensis and a 3rd parent
  16. 2. PHYLOGENOMIC ANALYSES Testing by Phylogenomics Lunt et al arXiv

    2013 http://arxiv.org/abs/1306.6163 M. hapla M. hapla X Z M. floridensis M. incognita X X+Z B Scenario 3 M. hapla X Z M. floridensis M. incognita X Z+Z A Scenario 1 & 2 A M. hapla X Z M. floridensis M. incognita X X+Z B Scenario 3 M. hapla X Z M. floridensis M. incognita X Z+Z A Scenario 1 & 2 B M. hapla X Y Z M. floridensis M. incognita X+Y Y+Z C Scenario 4 M. hapla X Y Z M. floridensis M. incognita X+Y (X+Y)+Z D Scenario 5 M. hapla X Z M. floridensis M. incognita X X+Z B Scenario 3 M. hapla X Z M. floridensis M. incognita X Z+Z A Scenario 1 & 2 X+Y C M. hapla X Y Z M. floridensis M. incognita X+Y Y+Z C Scenario 4 M. hapla X Y Z M. floridensis M. incognita X+Y (X+Y)+Z D Scenario 5 M. hapla X Z M. floridensis M. incognita X X+Z B Scenario 3 M. hapla X Z M. floridensis M. incognita X Z+Z A Scenario 1 & 2 X+Y D • Recover all genes from 3 genomes! • CDS orthologues determined by InParanoid! • 4018 ortholog clusters included all 3 species! • Retained those with a single copy in the outgroup M. hapla ! • ML Phylogenies of relationships between Mi and Mf gene copies! • Trees parsed and pooled to represent frequencies of different relationships
  17. 17 Each tree contains a single M. hapla sequence as

    outgroup (black square) Grey square indicates relative frequency of those topologies Trees are pooled within squares into different patterns of relationships Grid squares represent different numbers of gene copies
  18. 2. PHYLOGENOMIC ANALYSES Testing by Phylogenomics Lunt et al arXiv

    2013 http://arxiv.org/abs/1306.6163 M. hapla M. hapla X Z M. floridensis M. incognita X X+Z B Scenario 3 M. hapla X Z M. floridensis M. incognita X Z+Z A Scenario 1 & 2 A M. hapla X Z M. floridensis M. incognita X X+Z B Scenario 3 M. hapla X Z M. floridensis M. incognita X Z+Z A Scenario 1 & 2 B M. hapla X Y Z M. floridensis M. incognita X+Y Y+Z C Scenario 4 M. hapla X Y Z M. floridensis M. incognita X+Y (X+Y)+Z D Scenario 5 M. hapla X Z M. floridensis M. incognita X X+Z B Scenario 3 M. hapla X Z M. floridensis M. incognita X Z+Z A Scenario 1 & 2 X+Y C M. hapla X Y Z M. floridensis M. incognita X+Y Y+Z C Scenario 4 M. hapla X Y Z M. floridensis M. incognita X+Y (X+Y)+Z D Scenario 5 M. hapla X Z M. floridensis M. incognita X X+Z B Scenario 3 M. hapla X Z M. floridensis M. incognita X Z+Z A Scenario 1 & 2 X+Y D We assess the fit of the tree topologies to our hypotheses! • Five out of seven cluster sets, and 95% of all trees, support hybrid origins for both M. floridensis and M. incognita! • ie exclude hypotheses A and B! • Hypothesis C best explains 17 trees! • Hypothesis D best explains 1335 trees
  19. 2. PHYLOGENOMIC ANALYSES Testing by Phylogenomics Lunt et al arXiv

    2013 http://arxiv.org/abs/1306.6163 M. hapla X Y Z M. floridensis M. incognita X+Y Y+Z M. hapla X Y Z M. floridensis M. incognita X+Y (X+Y)+Z M. hapla X Z M. floridensis M. incognita X X+Z M. hapla X Z M. floridensis M. incognita X Z+Z X+Y A M. hapla X Y Z M. floridensis M. incognita X+Y Y+Z M. hapla X Y Z M. floridensis M. incognita X+Y (X+Y)+Z M. hapla X Z M. floridensis M. incognita X X+Z M. hapla X Z M. floridensis M. incognita X Z+Z X+Y B M. hapla X Y Z M. floridensis M. incognita X+Y Y+Z M. hapla X Y Z M. floridensis M. incognita X+Y (X+Y)+Z M. hapla X Z M. floridensis M. incognita X X+Z M. hapla X Z M. floridensis M. incognita X Z+Z X+Y C M. floridensis is a parental species of “double hybrid” M. incognita with other parent unknown M. hapla X Y Z M. floridensis M. incognita X+Y Y+Z C Scenario 4 M. hapla X Y Z M. floridensis M. incognita X+Y (X+Y)+Z D Scenario 5 X Z M. floridensis M. incognita X X+Z B Scenario 3 X+Y Hypothesis D Conclusion:
  20. MELOIDOGYNE COMPARATIVE GENOMICS 1. Ongoing Work • Genomes in a

    phylogenetic design! • Testing effect of recombination & breeding system on genome change! • hybrids, inbred, outbred, loss of meiosis, TEs, mutational patterns, gene families Meloidogyne breeding system and genome evolution
  21. MELOIDOGYNE COMPARATIVE GENOMICS 2. Wild speculation Happy to discuss in

    the bar…! • ancient asexuality! • reproductive mode transitions! • adaptation through transgressive segregation! • the ‘hybrid threat’! • distinguishing single/multiple origins of apomicts! • contagious asexuality Dave Lunt Evolutionary Biology Group, University of Hull davelunt@gmail.com davelunt.net speakerdeck.com/davelunt slides available
  22. Dave Lunt @davelunt speakerdeck.com/davelunt slides available Georgios Koutsovoulos Mark Blaxter

    Sujai Kumar Comparative genomics of root knot nematodes: Tales of sex, hybridisation and adaptation Evolutionary Biology Group, University of Hull Institute of Evolutionary Biology, University of Edinburgh davelunt@gmail.com davelunt.net