Upgrade to Pro — share decks privately, control downloads, hide ads and more …

The comparative genomics of 'ancient asexuality' and hybridization in root knot nematodes

Dave Lunt
October 09, 2013

The comparative genomics of 'ancient asexuality' and hybridization in root knot nematodes

Seminar given at UCL October 2013

Dave Lunt

October 09, 2013
Tweet

More Decks by Dave Lunt

Other Decks in Science

Transcript

  1. THE COMPARATIVE
    GENOMICS OF
    ‘ANCIENT
    ASEXUALITY’ AND
    HYBRIDIZATION IN
    ROOT KNOT
    NEMATODES
    Dave Lunt
    Evolutionary Biology Group, University of Hull

    View Slide

  2. COMPLEX HYBRID
    ORIGINS OF ROOT
    KNOT NEMATODES
    Dave Lunt
    Evolutionary Biology Group, University of Hull
    Institute of Evolutionary Biology, University of Edinburgh
    Georgios Koutsovoulos
    Mark Blaxter
    Sujai Kumar

    View Slide

  3. COMPLEX HYBRID
    ORIGINS OF ROOT
    KNOT NEMATODES
    Acknowledgements
    Africa Gómez, Richard Ennos, Amir Szitenberg,
    Karim Gharbi, Chris Mitchell, Steve Moss, Tom
    Powers, Janete Brito, Etienne Danchin, Marian
    Thomson & GenePool
    Funding
    NERC, BBSRC, Yorkshire Agricultural Society,
    Nuffield Foundation, University of Hull,
    University of Edinburgh

    View Slide

  4. COMPLEX HYBRID ORIGINS
    OF ROOT KNOT NEMATODES
    Dave Lunt
    davelunt.net
    @davelunt
    [email protected]
    @EvoHull +EvoHull
    +davelunt
    Evolutionary Biology Group, University of Hull
    http://www.github.com/davelunt

    View Slide

  5. COMPLEX HYBRID ORIGINS OF ROOT KNOT NEMATODES
    WHAT’S IN A
    GENOME & WHY?

    View Slide

  6. COMPLEX HYBRID ORIGINS OF ROOT KNOT NEMATODES
    WHAT’S IN A
    GENOME & WHY?
    mostly transposons,
    repeats, & sequences
    of incertae sedis
    For many eukaryotes:
    but why?

    View Slide

  7. COMPLEX HYBRID ORIGINS OF ROOT KNOT NEMATODES
    SEM Meloidogyne female
    WHAT’S IN A
    GENOME & WHY?
    Evolutionary Forces:
    Selection
    Gene Flow
    Mutation
    Drift
    Recombination

    View Slide

  8. COMPLEX HYBRID ORIGINS OF ROOT KNOT NEMATODES
    Studying
    Recombination
    Study its effects in genomic regions with
    reduced recombination
    • sex chromosomes
    • inversions
    Study its action in species that have lost
    meiotic recombination
    • asexuals
    A B C D E F
    sexual
    asexual
    origin of
    asexuality
    asexual

    View Slide

  9. COMPLEX HYBRID ORIGINS OF ROOT KNOT NEMATODES
    Studying
    Recombination
    Mitotic reproduction has consequences
    for the genome
    • decay of sex-specific genes
    • extreme Allelic Sequence Divergence
    • loss of mutational effects of
    recombination
    A B C D E F
    sexual
    asexual
    origin of
    asexuality
    asexual

    View Slide

  10. THE MELOIDOGYNE RKN SYSTEM
    Meloidogyne Root Knot Nematodes
    • Globally important agricultural pest species
    • Enormous plant host range
    • parasitize all main crop plants
    • ~5% loss of world agriculture
    JD Eisenback
    RKN
    juveniles
    enter root tip
    infected uninfected
    SEM Meloidogyne female
    JD Eisenback

    View Slide

  11. THE MELOIDOGYNE RKN SYSTEM
    Meloidogyne Reproduction
    • Wide variety of reproductive modes in a
    single genus
    • Many species are mitotic parthenogens
    without chromosome pairs
    • Incapable of meiosis
    • Could be ‘ancient’ asexuals
    • 17 million years without meiosis?

    View Slide

  12. THE MELOIDOGYNE RKN SYSTEM
    Meloidogyne Reproduction
    • Wide variety of reproductive modes in a
    single genus
    • Many species are mitotic parthenogens
    without chromosome pairs
    • Other species are meiotic parthenogens
    • automixis

    View Slide

  13. THE MELOIDOGYNE RKN SYSTEM
    Meloidogyne Reproduction
    • Wide variety of reproductive modes in a
    single genus
    • Many species are mitotic parthenogens
    without chromosome pairs
    • Some species are obligatory outbreeding
    sexuals with males & females
    • amphimixis
    • Other species are meiotic parthenogens

    View Slide

  14. THE MELOIDOGYNE RKN SYSTEM
    Meloidogyne Reproduction
    • Wide variety of reproductive modes in a single genus

    View Slide

  15. MELOIDOGYNE REPRODUCTION
    Are RKN Ancient Asexuals?
    Investigations based on multi-species
    single gene sequencing and phylogenetics:
    •testing for extreme allelic sequence
    divergence
    •testing for changes in molecular evolution
    pattern of sex-specific loci
    Lunt DH 2008 BMC Evolutionary Biology 8:194

    View Slide

  16. RECOMBINATION AND ASEXUALITY
    Extreme Allelic Sequence Divergence
    "If we suppose an ameiotic form evolving
    for a very long period of time we might
    imagine its two chromosome sets
    becoming completely unlike, so that it
    could no longer be considered as a
    diploid either in a genetical or cytological
    sense."
    Sometimes called Meselson effect, similar to paralogous loci
    A B C D E F
    sexual
    asexual
    origin of
    asexuality
    asexual
    MJD White ‘Animal Cytology and Evolution’ 1st ed 1945, p283

    View Slide

  17. RECOMBINATION AND ASEXUALITY
    Extreme Allelic Sequence Divergence
    A B C D E F
    sexual
    asexual
    origin of
    asexuality
    asexual

    View Slide

  18. RECOMBINATION AND ASEXUALITY
    loss of meiosis
    A B C D E F
    Extreme Asexual ASD
    alleles
    taxon
    Recent
    Ancient
    1 2 3
    asexual sexual
    asexual
    Redrawn after Birky 1996
    Divergence between
    alleles of sexual species
    Divergence between
    asexual species ‘alleles’
    alleles
    by
    recom
    bination
    m
    eiosis
    hom
    ogenizes

    View Slide

  19. THE SIGNATURES OF ANCIENT ASEXUALITY
    Extreme allelic sequence divergence
    Allelic Sequence Divergence levels are
    much greater in asexuals Meloidogyne
    than sexual Meloidogyne
    Pi (nucleotide diversity)
    Sexual Asexual apomicts
    |
    Species Max intraspecific
    substitutions
    Substitutions to
    closest relative
    M. incognita 15 0 M. javanica
    M. javanica 16 0 M. incognita
    RNA polymerase II
    Dystrophin
    Species Max intraspecific
    substitutions
    Substitutions to
    closest relative
    M. javanica 30 0 M. arenaria
    M. arenaria 32 0 M. javanica
    M.javanica
    M.javanica
    M.javanica
    M.arenaria
    M.javanica
    M.javanica
    M.javanica
    M.incognita

    View Slide

  20. THE SIGNATURES OF ANCIENT ASEXUALITY
    Extreme allelic sequence divergence
    ASD can be very large within asexual
    individuals
    Pi (nucleotide
    Sex Asexual
    |
    Species Max intraspecific
    substitutions
    Substitutions to closest
    relative
    M. incognita 15 0 M. javanica
    M. javanica 16 0 M. incognita
    RNA polymerase II
    Dystrophin
    Species Max intraspecific
    substitutions
    Substitutions to closest
    relative
    M. javanica 30 0 M. arenaria
    M. arenaria 32 0 M. javanica
    M.javanica
    M.javanica
    M.javanica
    M.arenaria
    M.javanica
    M.javanica
    M.javanica
    M.incognita
    Yet identical alleles can be found
    between different species

    View Slide

  21. THE SIGNATURES OF ANCIENT ASEXUALITY
    Extreme allelic sequence divergence
    Lunt DH 2008 BMC Evolutionary Biology 8:194
    Pi (nucleotide
    Sex Asexual
    |
    Species Max intraspecific
    substitutions
    Substitutions to closest
    relative
    M. incognita 15 0 M. javanica
    M. javanica 16 0 M. incognita
    RNA polymerase II
    Dystrophin
    Species Max intraspecific
    substitutions
    Substitutions to closest
    relative
    M. javanica 30 0 M. arenaria
    M. arenaria 32 0 M. javanica
    M.javanica
    M.javanica
    M.javanica
    M.arenaria
    M.javanica
    M.javanica
    M.javanica
    M.incognita
    This allele sharing is not predicted by
    ancient asexuality, and suggests
    interspecific hybridization

    View Slide

  22. RECOMBINATION AND ASEXUALITY
    loss of meiosis
    A B C D E F
    Extreme Asexual ASD
    alleles
    taxon
    Recent
    Ancient
    1 2 3
    asexual sexual
    asexual
    Redrawn after Birky 1996
    Divergence between
    alleles of sexual species
    Divergence between
    asexual species ‘alleles’
    alleles
    by
    recom
    bination
    m
    eiosis
    hom
    ogenizes

    View Slide

  23. RECOMBINATION AND ASEXUALITY
    A B A D C
    Extreme Hybrid ASD
    Alleles
    Taxa
    Recent
    Ancient
    Sexual
    parental
    species
    Redrawn after Birky 1996
    Divergence between
    alleles of parental species
    Divergence between
    hybrid species alleles
    m
    eiosis
    hom
    ogenizes
    alleles
    by
    recom
    bination
    A C D
    Ancestor of
    sexual parental
    species
    Hybridization
    event
    meiosis homogenizes alleles
    Sexual
    parental
    species
    hybrid
    apomict
    hybrid
    apomict
    mitotic

    View Slide

  24. TESTING ANCIENT ASEXUALITY
    Sex Specific Loci
    Electron microscope images from
    Ward lab, http://
    www.mcb.arizona.edu/wardlab/
    • Nematodes have amoeboid (crawling) sperm
    • msp genes only expressed in sperm and
    spermatocytes
    • Structural protein of sperm
    • Signal to recommence meiosis
    • Prediction: msp gene should show signatures
    of loss of function (pseudogenization) in
    asexuals
    Major Sperm Protein

    View Slide

  25. msp intron diversity in asexuals
    14
    Mutations are not
    randomly distributed but
    cluster within the intron,
    exactly as for functional
    genes
    Selection on this gene cannot have been abandoned anciently

    View Slide

  26. msp intron diversity in asexuals
    14
    ML models of evolution
    are identical on sexual
    and asexual branches of
    tree
    Selection on this gene cannot have been abandoned anciently

    View Slide

  27. MELOIDOGYNE REPRODUCTION
    Previous Single Gene Sequencing
    I can reject ancient asexuality on basis of
    interspecific allele sharing and identical
    molecular evolution of sperm protein
    genes
    Data suggests interspecific hybrid origins
    Lunt DH 2008 BMC Evolutionary Biology 8:194

    View Slide

  28. MELOIDOGYNE HYBRIDIZATION
    Hybrid Speciation
    • Once thought that hybrid speciation was
    rare and inconsequential in animals
    • Genome biology is revealing a very
    different view
    • We have investigated the origins of
    Meloidogyne asexuals in this context

    View Slide

  29. Is M. floridensis the parent of the asexuals?
    M. floridensis is found within the
    phylogenetic diversity of asexual
    species
    It reproduces sexually by automixis
    Could it be a parent of the asexual
    lineages via interspecific hybridization?
    MELOIDOGYNE HYBRIDIZATION GENOMICS
    M.floridensis M. ???
    M. incognita
    M. javanica
    M. arenaria
    x
    apomicts
    parental species
    automict

    View Slide

  30. Is M. floridensis the parent of the asexuals?
    Investigated using whole genome
    sequences and 2 distinct approaches;
    --look at the within-genome patterns
    of diversity to determine hybrid
    nature of genomes
    --look at phylogenetic relationships of
    all genes to study origins and parents
    MELOIDOGYNE HYBRIDIZATION GENOMICS
    M.floridensis M. ???
    M. incognita
    M. javanica
    M. arenaria
    x
    apomicts
    parental species
    automict

    View Slide

  31. MELOIDOGYNE HYBRIDIZATION GENOMICS
    Meloidogyne comparative genomics
    We have sequenced M. floridensis
    genome and are able to compare to 2
    other Meloidogyne genomes published
    by other groups
    M.floridensis M. ???
    M. incognita
    M. javanica
    M. arenaria
    x
    apomicts
    parental species
    automict
    asexual, hybrid?
    sexual, parental?
    sexual, outgroup

    View Slide

  32. MELOIDOGYNE COMPARATIVE GENOMICS
    The Meloidogyne floridensis genome
    • 100Mb assembly ~100x genomic
    coverage
    • 15.3k predicted proteins
    • Directly comparable to published
    Meloidogyne genomes
    Lunt et al arXiv 2013 http://arxiv.org/abs/1306.6163

    View Slide

  33. MELOIDOGYNE COMPARATIVE GENOMICS
    Comparative genomics questions
    Lunt et al arXiv 2013 http://arxiv.org/abs/1306.6163
    • Is there evidence of hybrid origins
    of asexual species?
    • Nature of hybridization?
    • Is M. floridensis a parental?
    • How do offspring and parental
    genomes differ?

    View Slide

  34. INTRA-GENOMIC ANALYSES
    ID of duplicated protein-coding regions
    Lunt et al arXiv 2013 http://arxiv.org/abs/1306.6163
    • Coding sequences from each
    of the three target genomes
    (M. hapla, M. incognita and M.
    floridensis) were compared to
    the set of genes from the same
    species
    • The percent identity of the best matching (non-self) coding
    sequence was calculated, and is plotted as a frequency
    histogram
    • Both M. incognita and M. floridensis show evidence of presence
    of many duplicates, while M. hapla does not
    Self identity comparisons

    View Slide

  35. INTRA-GENOMIC ANALYSES
    ID of duplicated protein-coding regions
    Lunt et al arXiv 2013 http://arxiv.org/abs/1306.6163
    • Coding sequences from each of the three target genomes (M.
    hapla, M. incognita and M. floridensis) were compared to the
    set of genes from the same species
    • The percent identity of the
    best matching (non-self) coding
    sequence was calculated, and is
    plotted as a frequency
    histogram
    • Both M. incognita and M. floridensis show evidence of presence
    of many duplicates, while M. hapla does not
    Self identity comparisons

    View Slide

  36. INTRA-GENOMIC ANALYSES
    ID of duplicated protein-coding regions
    Lunt et al arXiv 2013 http://arxiv.org/abs/1306.6163
    • Coding sequences from each of the three target genomes (M.
    hapla, M. incognita and M. floridensis) were compared to the
    set of genes from the same species
    • The percent identity of the best matching (non-self) coding
    sequence was calculated, and is plotted as a frequency
    histogram
    • Both M. incognita and M.
    floridensis show evidence of
    presence of many duplicates,
    while M. hapla does not
    Self identity comparisons

    View Slide

  37. INTRA-GENOMIC ANALYSES
    ID of duplicated protein-coding regions
    Lunt et al arXiv 2013 http://arxiv.org/abs/1306.6163
    Self identity comparisons
    • Both M. incognita and M.
    floridensis contain diverged
    gene copies.
    • These loci duplicated at
    approximately the same
    point in time.
    • A ploidy change is not
    involved.
    • This is expected pattern for
    hybrid genomes

    View Slide

  38. COMPARATIVE GENOMICS
    M. floridensis Genome Size
    Lunt et al arXiv 2013 http://arxiv.org/abs/1306.6163
    • Assembly size is not haploid
    genome size for hybrid species
    • Divergence (4-8%) between
    homeologous (hybrid) copies will
    preclude assembly
    • Our assembly of 100Mb is ~2x
    50-54Mb genome size of M. hapla

    View Slide

  39. HYBRIDIZATION HYPOTHESES
    Hybridization Hypotheses
    Lunt et al arXiv 2013 http://arxiv.org/abs/1306.6163
    There are very many ways species could
    hybridize, duplicate genes, lose genes
    We have selected a broad range of
    possibilities informed by prior knowledge
    We have tested their predictions
    phylogenetically
    M. hapla
    X Z
    M. floridensis
    M. incognita
    X Z+Z
    A Scenario 1 & 2
    A
    M. hapla
    X Z
    M. floridensis
    M. incognita
    X X+Z
    B Scenario 3
    M. hapla
    X Z
    M. floridensis
    M. incognita
    X Z+Z
    A Scenario 1 & 2
    B
    M. hapla
    X Y Z
    M. floridensis
    M. incognita
    X+Y Y+Z
    C Scenario 4
    M. hapla
    X Z
    M. floridensis
    M. incognita
    X X+Z
    B Scenario 3
    M. hapla
    X Z
    M. floridensis
    M. incognita
    X Z+Z
    A Scenario 1 & 2
    C
    M. hapla
    X Y Z
    M. floridensis
    M. incognita
    X+Y Y+Z
    M. hapla
    X Y Z
    M. floridensis
    M. incognita
    X+Y
    (X+Y)+Z
    M. hapla
    X Z
    M. floridensis
    M. incognita
    X X+Z
    M. hapla
    X Z
    M. floridensis
    M. incognita
    X Z+Z
    X+Y
    D

    View Slide

  40. 39
    M. hapla
    X Y Z
    M. floridensis
    M. incognita
    X+Y Y+Z
    C Scenario 4
    M. hapla
    X Y Z
    M. floridensis
    M. incognita
    X+Y
    (X+Y)+Z
    D Scenario 5
    M. hapla
    X Z
    M. floridensis
    M. incognita
    X X+Z
    B Scenario 3
    Z
    M. incognita
    Z+Z
    1 & 2
    X+Y
    M. hapla
    X Y Z
    M. floridensis
    M. incognita
    X+Y Y+Z
    C Scenario 4
    M. hapla
    X Y Z
    M. floridensis
    M. incognita
    X+Y
    (X+Y)+Z
    D Scenario 5
    Z
    M. incognita
    +Z
    X+Y
    M. hapla
    X Y
    M. floridensis
    X+Y
    C Scenario 4
    M. hapla
    X Z
    M. floridensis
    M. incognita
    X X+Z
    B Scenario 3
    M. hapla
    X Z
    M. floridensis
    M. incognita
    X Z+Z
    A Scenario 1 & 2
    M. hapla
    X Y Z
    M. floridensis
    M. incognita
    X+Y Y+Z
    C Scenario 4
    M. hapla
    D
    M. hapla
    X Z
    M. floridensis
    M. incognita
    X X+Z
    B Scenario 3
    M. hapla
    X Z
    M. floridensis
    M. incognita
    X Z+Z
    A Scenario 1 & 2
    Hybridization hypotheses
    A B
    C D

    View Slide

  41. M. hapla
    X
    M. floridensis
    X
    B Scenario
    M. hapla
    X Z
    M. floridensis
    M. incognita
    X Z+Z
    A Scenario 1 & 2
    (A)
    Whole genome
    duplication(s)

    View Slide

  42. 41
    M. hapla
    X
    M. floridensis
    X+Y
    C Scena
    M. hapla
    X Z
    M. floridensis
    M. incognita
    X X+Z
    B Scenario 3
    M. incognita
    Z
    (B)
    M. incognita is an
    interspecific hybrid with
    M. floridensis as one
    parent

    View Slide

  43. M. hapla
    X Y Z
    M. floridensis
    M. incognita
    X+Y Y+Z
    C Scenario 4
    M. hapla
    X Y
    M. florid
    X+Y
    D Scenario
    X+Y
    (C)
    M. incognita and M.
    floridensis are
    independent hybrids
    sharing one parent

    View Slide

  44. Z
    M. hapla
    X Y Z
    M. floridensis
    M. incognita
    X+Y
    (X+Y)+Z
    D Scenario 5
    X+Y
    (D)
    M. floridensis is a hybrid
    and M. incognita is a
    secondary hybrid
    between M. floridensis and
    a 3rd parent

    View Slide

  45. HYBRIDIZATION HYPOTHESES
    Testing by Phylogenomics
    Lunt et al arXiv 2013 http://arxiv.org/abs/1306.6163
    M. hapla
    M. hapla
    X Z
    M. floridensis
    M. incognita
    X X+Z
    B Scenario 3
    M. hapla
    X Z
    M. floridensis
    M. incognita
    X Z+Z
    A Scenario 1 & 2
    A
    M. hapla
    X Z
    M. floridensis
    M. incognita
    X X+Z
    B Scenario 3
    M. hapla
    X Z
    M. floridensis
    M. incognita
    X Z+Z
    A Scenario 1 & 2
    B
    M. hapla
    X Y Z
    M. floridensis
    M. incognita
    X+Y Y+Z
    C Scenario 4
    M. hapla
    X Y Z
    M. floridensis
    M. incognita
    X+Y
    (X+Y)+Z
    D Scenario 5
    M. hapla
    X Z
    M. floridensis
    M. incognita
    X X+Z
    B Scenario 3
    M. hapla
    X Z
    M. floridensis
    M. incognita
    X Z+Z
    A Scenario 1 & 2
    X+Y
    C
    M. hapla
    X Y Z
    M. floridensis
    M. incognita
    X+Y Y+Z
    C Scenario 4
    M. hapla
    X Y Z
    M. floridensis
    M. incognita
    X+Y
    (X+Y)+Z
    D Scenario 5
    M. hapla
    X Z
    M. floridensis
    M. incognita
    X X+Z
    B Scenario 3
    M. hapla
    X Z
    M. floridensis
    M. incognita
    X Z+Z
    A Scenario 1 & 2
    X+Y
    D
    • Coding sequences from 3 genomes were
    placed into orthologous groups (InParanoid)
    • 4018 ortholog clusters included all 3 species
    • We retained those with a single copy in the
    outgroup M. hapla
    • Phylogenies of relationships between Mi and
    Mf gene copies (RAxML)
    • Trees were parsed and pooled to represent
    frequencies of different relationships

    View Slide

  46. 45
    Each tree
    contains a
    single M. hapla
    sequence as
    outgroup
    (black square)
    Grey square
    indicates
    relative
    frequency of
    those
    topologies
    Trees are
    pooled within
    squares into
    different
    patterns of
    relationships
    Grid squares
    represent
    different
    numbers of
    gene copies

    View Slide

  47. HYBRIDIZATION HYPOTHESES
    Testing by Phylogenomics
    Lunt et al arXiv 2013 http://arxiv.org/abs/1306.6163
    M. hapla
    M. hapla
    X Z
    M. floridensis
    M. incognita
    X X+Z
    B Scenario 3
    M. hapla
    X Z
    M. floridensis
    M. incognita
    X Z+Z
    A Scenario 1 & 2
    A
    M. hapla
    X Z
    M. floridensis
    M. incognita
    X X+Z
    B Scenario 3
    M. hapla
    X Z
    M. floridensis
    M. incognita
    X Z+Z
    A Scenario 1 & 2
    B
    M. hapla
    X Y Z
    M. floridensis
    M. incognita
    X+Y Y+Z
    C Scenario 4
    M. hapla
    X Y Z
    M. floridensis
    M. incognita
    X+Y
    (X+Y)+Z
    D Scenario 5
    M. hapla
    X Z
    M. floridensis
    M. incognita
    X X+Z
    B Scenario 3
    M. hapla
    X Z
    M. floridensis
    M. incognita
    X Z+Z
    A Scenario 1 & 2
    X+Y
    C
    M. hapla
    X Y Z
    M. floridensis
    M. incognita
    X+Y Y+Z
    C Scenario 4
    M. hapla
    X Y Z
    M. floridensis
    M. incognita
    X+Y
    (X+Y)+Z
    D Scenario 5
    M. hapla
    X Z
    M. floridensis
    M. incognita
    X X+Z
    B Scenario 3
    M. hapla
    X Z
    M. floridensis
    M. incognita
    X Z+Z
    A Scenario 1 & 2
    X+Y
    D
    • We assess the fit of the tree topologies to
    our hypotheses
    • Five out of seven cluster sets, and 95% of all
    trees, support hybrid origins for both M.
    floridensis and M. incognita
    • ie exclude hypotheses A and B
    • Hypothesis C best explains 17 trees
    • Hypothesis D best explains 1335 trees

    View Slide

  48. HYBRIDIZATION HYPOTHESES
    Testing by Phylogenomics
    Lunt et al arXiv 2013 http://arxiv.org/abs/1306.6163
    M. hapla
    X Y Z
    M. floridensis
    M. incognita
    X+Y Y+Z
    M. hapla
    X Y Z
    M. floridensis
    M. incognita
    X+Y
    (X+Y)+Z
    M. hapla
    X Z
    M. floridensis
    M. incognita
    X X+Z
    M. hapla
    X Z
    M. floridensis
    M. incognita
    X Z+Z
    X+Y
    A
    M. hapla
    X Y Z
    M. floridensis
    M. incognita
    X+Y Y+Z
    M. hapla
    X Y Z
    M. floridensis
    M. incognita
    X+Y
    (X+Y)+Z
    M. hapla
    X Z
    M. floridensis
    M. incognita
    X X+Z
    M. hapla
    X Z
    M. floridensis
    M. incognita
    X Z+Z
    X+Y
    B
    M. hapla
    X Y Z
    M. floridensis
    M. incognita
    X+Y Y+Z
    M. hapla
    X Y Z
    M. floridensis
    M. incognita
    X+Y
    (X+Y)+Z
    M. hapla
    X Z
    M. floridensis
    M. incognita
    X X+Z
    M. hapla
    X Z
    M. floridensis
    M. incognita
    X Z+Z
    X+Y
    C
    • The genome data supports both M.
    incognita and M. floridensis as interspecific
    hybrids
    • M. floridensis is a parental species of
    “double hybrid” M. incognita with other
    parent unknown
    M. hapla
    X Y Z
    M. floridensis
    M. incognita
    X+Y Y+Z
    C Scenario 4
    M. hapla
    X Y Z
    M. floridensis
    M. incognita
    X+Y
    (X+Y)+Z
    D Scenario 5
    X Z
    M. floridensis
    M. incognita
    X X+Z
    B Scenario 3
    X+Y
    Hypothesis D

    View Slide

  49. MELOIDOGYNE COMPARATIVE GENOMICS
    Comparative genomics questions
    Lunt et al arXiv 2013 http://arxiv.org/abs/1306.6163
    • Is there evidence of hybrid speciation?
    • Yes, complex hybrid origins are clear
    • Is M. floridensis a parental?
    • Yes, identified by phylogenomics and allelic
    sequence identity
    • How do offspring and parental genomes
    differ? What are the broader implications?
    • Ongoing work...

    View Slide

  50. MELOIDOGYNE COMPARATIVE GENOMICS
    Ongoing Work
    Lunt et al arXiv 2013 http://arxiv.org/abs/1306.6163
    • 19 genomes in a phylogenetic design
    • Testing effect of recombination &
    breeding system on genome change
    • hybrids, inbred, outbred, loss of meiosis
    • TEs, mutational patterns, gene families
    Current NERC grant on Meloidogyne breeding
    system and genome evolution
    Recombination and genomic rates and patterns of
    molecular evolution

    View Slide

  51. COMPLEX HYBRID ORIGINS
    OF ROOT KNOT NEMATODES
    SEM Meloidogyne female
    Dave Lunt
    JD Eisenback
    JD Eisenback
    juveniles
    enter
    root tip
    Evolutionary Biology Group, University of Hull

    View Slide

  52. COMPLEX HYBRID ORIGINS
    OF ROOT KNOT NEMATODES
    SEM Meloidogyne female
    Dave Lunt
    JD Eisenback
    JD Eisenback
    juveniles
    enter
    root tip
    Evolutionary Biology Group, University of Hull
    davelunt.net
    @davelunt
    [email protected]
    @EvoHull +EvoHull
    +davelunt
    http://www.github.com/davelunt

    View Slide