Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Mapping echoes: the acoustics of riverbed and shallow seafloors

Mapping echoes: the acoustics of riverbed and shallow seafloors

NAU School of Computing, Informatics and Cyber Systems

Daniel Buscombe

April 04, 2018
Tweet

More Decks by Daniel Buscombe

Other Decks in Science

Transcript

  1. Co-conspirators • Paul Grams, U.S. Geological Survey Grand Canyon Monitoring

    & Research Center • Matt Kaplinski, Sandbar Studies Unit, NAU-SESES Daniel Buscombe. [email protected] NAU-SICCS Seminar, 4/3/18 2/41 2/41
  2. • 1999: 100% surface topography of Mars by NASA’s Mars

    Orbiter Laser Altimeter • 2018: estimated 7 —18% of Earth’s ocean floor mapped at same resolution • 2018: launch of ‘Seabed 2030’ (GEBCO / Nippon Foundation) Daniel Buscombe. [email protected] NAU-SICCS Seminar, 4/3/18 3/41 3/41
  3. The world’s shallow water: continental shelf • ≈10% < 150

    m average depth • water absorbs > 50% of visible light energy within 10 m Daniel Buscombe. [email protected] NAU-SICCS Seminar, 4/3/18 8/41 8/41
  4. The world’s shallow water: lakes • Cæl et al. (2017)

    • 278,966,646 lakes • ≈99.9% < 10 m average depth Daniel Buscombe. [email protected] NAU-SICCS Seminar, 4/3/18 9/41 9/41
  5. The world’s shallow water: rivers • Andreadis et al. (2013)

    • 3,458,785 rivers • ≈85% < 1 m average depth Daniel Buscombe. [email protected] NAU-SICCS Seminar, 4/3/18 10/41 10/41
  6. Shallow water is disproportionately important • Biodiversity • Sediment transport

    • Economy Daniel Buscombe. [email protected] NAU-SICCS Seminar, 4/3/18 11/41 11/41
  7. Shallow water is disproportionately important • Biodiversity • Sediment transport

    • Economy • Human society: 40% global pop. within 10m of sea level (UN, 2007) Daniel Buscombe. [email protected] NAU-SICCS Seminar, 4/3/18 11/41 11/41
  8. Acoustics in shallow water are different Classical scattering theory not

    applicable: • Bed is acoustically rough Daniel Buscombe. [email protected] NAU-SICCS Seminar, 4/3/18 12/41 12/41
  9. Acoustics in shallow water are different Classical scattering theory not

    applicable: • Bed is acoustically rough Daniel Buscombe. [email protected] NAU-SICCS Seminar, 4/3/18 12/41 12/41
  10. Acoustics in shallow water are different Classical scattering theory not

    applicable: • Small beams Daniel Buscombe. [email protected] NAU-SICCS Seminar, 4/3/18 12/41 12/41
  11. Acoustics in shallow water are different Classical scattering theory not

    applicable: • Small footprints = too few scatterers Daniel Buscombe. [email protected] NAU-SICCS Seminar, 4/3/18 12/41 12/41
  12. Acoustics in shallow water are different Classical scattering theory not

    applicable: • Significant topographic ‘contamination’ of the backscatter signal Daniel Buscombe. [email protected] NAU-SICCS Seminar, 4/3/18 12/41 12/41
  13. Acoustics in shallow water are different Classical scattering theory not

    applicable: • Deterministic physics out of favour Daniel Buscombe. [email protected] NAU-SICCS Seminar, 4/3/18 12/41 12/41
  14. Probabilistic approaches • y∗ = arg max y∈M P(x|y)P(y) =

    arg max y∈M P(x, y) • Modeling P(x, y) → generate x Daniel Buscombe. [email protected] NAU-SICCS Seminar, 4/3/18 14/41 14/41
  15. Probabilistic approaches • y∗ = arg max y∈M P(y|x, θ)

    • Bypasses P(x, y) (complicated) but task-specific • ANN, SVM, RF, etc Daniel Buscombe. [email protected] NAU-SICCS Seminar, 4/3/18 14/41 14/41
  16. Gaussian Mixture Model P(x|λ) = M ∑ m=1 wm g(x|µm

    , Σm ) • conditional probability of backscatter given λ • per-substrate weight • Gaussian pdf Daniel Buscombe. [email protected] NAU-SICCS Seminar, 4/3/18 16/41 16/41
  17. Filtering the topographic contamination Buscombe et al. (2017) Journal of

    Geophysical Research Daniel Buscombe. [email protected] NAU-SICCS Seminar, 4/3/18 17/41 17/41
  18. Filtering the topographic contamination Buscombe et al. (2017) Journal of

    Geophysical Research Daniel Buscombe. [email protected] NAU-SICCS Seminar, 4/3/18 17/41 17/41
  19. GMM results Buscombe et al. (2017) Journal of Geophysical Research

    Daniel Buscombe. [email protected] NAU-SICCS Seminar, 4/3/18 20/41 20/41
  20. Bedford Basin, Nova Scotia Buscombe & Grams (in review) IEEE

    Geo. & Rem. Sens. Letters Daniel Buscombe. [email protected] NAU-SICCS Seminar, 4/3/18 24/41 24/41
  21. Bedford Basin, Nova Scotia Buscombe & Grams (in review) IEEE

    Geo. & Rem. Sens. Letters Daniel Buscombe. [email protected] NAU-SICCS Seminar, 4/3/18 24/41 24/41
  22. Patricia Bay, British Columbia Buscombe & Grams (in review) IEEE

    Geo. & Rem. Sens. Letters Daniel Buscombe. [email protected] NAU-SICCS Seminar, 4/3/18 25/41 25/41
  23. Patricia Bay, British Columbia Buscombe & Grams (in review) IEEE

    Geo. & Rem. Sens. Letters Daniel Buscombe. [email protected] NAU-SICCS Seminar, 4/3/18 25/41 25/41
  24. Conditional Random Field PΦ (x, y) = I ∏ i=1

    ϕi Di ZΦ (x) = ∑ y PΦ (x, y) P(y|x) = 1 ZΦ (x) PΦ (x, y) P(y|x, θ) = 1 ZΦ (x) exp( −E(y|x, θ) ) Daniel Buscombe. [email protected] NAU-SICCS Seminar, 4/3/18 27/41 27/41
  25. Fully-Connected Conditional Random Field E(y|x, θ) = ∑ i ψi

    (yi, xi |θ) + ∑ i<j ψij (yi, yj, fi, fj |θ) • unary potentials • pairwise potentials Daniel Buscombe. [email protected] NAU-SICCS Seminar, 4/3/18 28/41 28/41
  26. Unary and pairwise potentials ψij (yi, yj, fi, fj |θ)

    = Λ(yi, yj |θ) L ∑ l=1 kl (fl i , fl j ) kl (fl i , fl j ) = exp      − |xi − xj |2 2θ2 β      +exp      − |pi − pj |2 2θ2 γ      • compatibility function • proximity tolerance Daniel Buscombe. [email protected] NAU-SICCS Seminar, 4/3/18 29/41 29/41
  27. Summary • Acoustic RS poised to explode in shallow water

    Daniel Buscombe. [email protected] NAU-SICCS Seminar, 4/3/18 36/41 36/41
  28. Summary • Acoustical problems in shallow water can be overcome

    Daniel Buscombe. [email protected] NAU-SICCS Seminar, 4/3/18 36/41 36/41
  29. Computing backscatter from echœs • Raw echo (what we measure)

    BS(θ) = EL − SL + 2TL − Af • 10 log 10 of ratios between a quantity and a reference quantity of acoustic pressure of 1 µ Pa • Source level [MEASURED] • Transmission losses [ESTIMATED] • True area of beam footprint [ESTIMATED] Amiri-Simkoœi et al., JASA, 2009; Buscombe et al., JGR, 2014 Daniel Buscombe. [email protected] NAU-SICCS Seminar, 4/3/18 39/41 39/41
  30. Modeling the signal footprint • model using the sonar geometry

    Buscombe et al., JGR, 2014 Daniel Buscombe. [email protected] NAU-SICCS Seminar, 4/3/18 40/41 40/41
  31. Modeling the signal footprint • correct using scaling factor =

    f(small scale roughness) Buscombe et al., JGR, 2017 Daniel Buscombe. [email protected] NAU-SICCS Seminar, 4/3/18 40/41 40/41