Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Adversarial Dynamics - Conficker case study

Adversarial Dynamics - Conficker case study

Game theory is too weak a framework to capture the adversarial dynamics of real life where the game is created, the rules evolve, the goals and moves are unknown

Daniel Jacob Bilar

January 09, 2013
Tweet

More Decks by Daniel Jacob Bilar

Other Decks in Research

Transcript

  1. Oscilla'ons  through  Co-­‐evolu'on:  A   Manifesta'on  of  Moving  Target  Defense

      Conficker  Case  Study   Daniel  Bilar  (Siege  Technologies)   George  Cybenko  (Dartmouth  College)   John  Murphy  (ProQueSys)     CSIIRW  8,  ONRL  (Oak  Ridge,  TN)   January  9,  2013   5/5/14 1
  2. Support   •  Research  par'ally  supported  by  DARPA  I2O,  

    DHS,  AFRL,  DOD,  OSD,  and  AFOSR  with  UTEP,   Ball  Aerospace,  Pikewerks,  Siege       – All  opinions  and  results  expressed  are  those  of   authors  and  not  necessarily  those  of  the  funding   agencies   •  Thanks  also  to  V.  Berk,  I.  Gregoriou-­‐de  Souza,   J.T  House,  D.  Sicilia,  G.  Stocco,  P.  Sweeney   5/5/14 2
  3. Outline  of  talk  1/2   •  Background:  Studied  public  data

     in  various  domains   –  US  border  security,  computer  vulnerability  databases,  offensive   &  defensive  coevolu'on  of  worms  (Conficker)   –  Modeled  as  players  in  adversarial  situa'on   •  Findings:    Performance  metrics  oscillate  over  Bme   –  No  asympto'c  convergence,  not  monotonic     •  Claim:  In  majority  of  (adversarial)  games,  players  do  not   compute  Nash  Equilibriums  over  (sta'c)  strategy  sets  but   use  myopically  perceived  best  responses  at  each  'me  step   –  ‘Classical’  game  theory  is  not  the  best  fit   •  Why:  Not  a  sta'onary  environment!  Ongoing  sequences  of   moves,  countermoves,  decep'on  and  strategic  adapta'on   –  Explains  exhibited  oscilla'ons  and  consistent  with  data   5/5/14 3
  4. Outline  of  talk  2/2   •  Problem:  Oscilla'ons  modeled  by

     replicator  equa'ons   –  Typically  3rd  degree,  non-­‐linear,  analy'cally  difficult   –  Inverse  problem  of  es'ma'ng  RE  parameters  from  observa'ons  of   behavior  computa'onally  tractable   •  Claim:  Possible  to  infer  players  mo'ves,  costs  and  move  op'ons   by  observa'on  of  oscilla'on   –  Not  discussed  in  this  talk   •  ContribuBons  of  authors   –  Detailed  empirical  analysis  of  players  Conficker  &  environment  (Bilar   &  Murphy)   –  Abstrac'on  of  game  through  Quan'ta've  Adack  Graph  (Bilar  &   Cybenko  &  Murphy)   –  “Asympto'c”  cut  set  theorem  (Cybenko)  for  op'mal  defense   alloca'on   5/5/14 4
  5. You  know  you  are  working  in  an  adversarial  domain  when

     you  want  to   see  this  kind  of  progress…   Better “performance” here means fewer deaths/mile Limit  ?   5/5/14 5
  6. ...but  instead,  you  see  this  …   Better “performance” here

    means fewer deaths/mile Limit  ?   Internet Crime Complaint Center, http://www.ic3.gov/default.aspx 5/5/14 6
  7. Border security... 1992 1994 1996 1998 2000 2002 2004 2006

    2008 2010 Time 0 0.5 1 1.5 2 Human Apprehensions (Entire SWB) x 1,000,000 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 0 0.5 1 1.5 2 5/5/14 8
  8. War on drugs... 1994 1996 1998 2000 2002 2004 2006

    2008 2010 Time 0 0.5 1 1.5 2 2.5 3 Drug Apprehensions (Entire SWB) x 1,000,000 1994 1996 1998 2000 2002 2004 2006 2008 2010 0 0.5 1 1.5 2 2.5 3 5/5/14 9
  9. Comments   •  “Performance”  measures  may  oscillate  (not   monotonic)

      –  Depends  partly  on  normaliza'on  of  metrics  (see  Fig  3.1  in   BMC  (2012))   •  Opera'ng  against  human  adversaries  is  different  than   opera'ng  against  nature   •  Games  not  defined  a  priori,  game  details  not  known   –  Players  do  not  know  who  the  other  players  are,  what  their   possible  moves  might  be  and,  perhaps  most  importantly,   what  their  preferred  outcomes  or  objec'ves  are   •  Result:  Co-­‐evoluBon,  adaptaBon  as  evinced  through   oscillaBons   5/5/14 10
  10. Conficker   •  AKA  Downup,  Downadup,  Kido   •  Detected

     November  2008   •  Largest  worm/botnet  infec'on  since  2003   •  Infected  million’s  of  machines   •  Evolved  through  5  versions  in  several  months   •  Affected  military  systems  in  France,  UK  etc   •  Used  many  vulnerabili'es  and  techniques   5/5/14 11
  11. Conficker Versions A-E Host States Adversarial Dynamics: The Conficker Case

    Study. Daniel Bilar, George Cybenko and John Murphy In Moving Target Defenses II, edited by S. Jajodia, Springer, 2012 5/5/14 12
  12. Abstrac'on  of  Adack/Defend  Game   •  AMackers  aMacks  “weakest”  paths

     to  achieve  goals   –  Weakest  according  to  adackers’  understanding   –  Paths  consist  of  one  or  more  technical  steps   –  Can  create  completely  new  paths  and/or  steps   •  Defenders  make  some  step(s)  of  the  most  common/ damaging  paths  harder  to  traverse   –  Most  common/damaging  according  to  defenders’   understanding   –  Users/boss  want  to  create  new  services  so  new  paths   emerge   •  Iterate  the  above  over  'me   5/5/14 15
  13. Adack  Graph  for  a  Cri'cal  System   State  1  

    State  2   Start   Goal   An attacker must traverse a path from the start state to the goal state to succeed Note: This is an actual attack graph on a real but proprietary system Each step is a technical means to achieve a subgoal 5/5/14 16
  14. State  1   State  2   Start   Goal  

    Adack  Graph  for  a  Cri'cal  System   An attacker must traverse a path from the start state to the goal state to succeed Attacker uses his “shortest” path Each step is a technical means to achieve a subgoal 5/5/14 17
  15. State  1   State  2   Start   Goal  

    Adack  Graph  for  a  Cri'cal  System   An attacker must traverse a path from the start state to the goal state to succeed Each step is a technical means to achieve a subgoal Attacker uses his “shortest” path Defender protects a step by increasing its cost 5/5/14 18
  16. State  1   State  2   Start   Goal  

    Adack  Graph  for  a  Cri'cal  System   An attacker must traverse a path from the start state to the goal state to succeed Attacker changes some edges in attack path Each step is a technical means to achieve a subgoal 5/5/14 19
  17. State  1   State  2   Start   Goal  

    Adack  Graph  for  a  Cri'cal  System   An attacker must traverse a path from the start state to the goal state to succeed Each step is a technical means to achieve a subgoal Or the attacker picks a completely new path 5/5/14 20
  18. State  1   State  2   Start   Goal  

    Adack  Graph  for  a  Cri'cal  System   An attacker must traverse a path from the start state to the goal state to succeed Each step is a technical means to achieve a subgoal Or the attacker creates a new path 5/5/14 21
  19. Comments   •  Adacks  graphs  are  old  technique  but  hard

     to  build  and   quan'fy   –  State  space  explosions,  how  to  assign  edge  costs,  blind   spots,  etc   –  Maybe  like  democracy,  worst  way  except  for  all  others   •  Predic'on  markets:  QuERIES  provides  a  technique  for   quan'fying  the  adack  graphs  by  cost,  difficulty,  etc     •  We  will  adapt,  invest  and  perform  beder  if  we  quan'fy   –  Pursuit-­‐evasion  –  go  to  where  the  prey  will  be   –  Flu  shots  an'cipate  the  flu,  not  respond  to  current  ones   –  Wayne  Gretzky  –  “A  good  hockey  player  plays  where  the   puck  is.  A  great  hockey  player  plays  where  the  puck  is   going  to  be.”   5/5/14 22
  20. Adack-­‐Defend  Game   •  Op'miza'on  problem  –  maximize  the  cost

     of  the  shortest   path  from  Start  to  Goal  states   •  Can  formulate  this  as  a  linear  programming  problem  –   solu'on  is  the  investment  allocaBon  that  makes  the  least   cost  aMack  as  expensive  as  possible     § Es'mate  costs  to  adacker  of  traversing  adack  graph  edges  –   shortest  path  is  the  most  adrac've  for  an  adacker  to  take   Start   Goal   Cost = 2 4 1 5 2 Simple Example – Shortest path in yellow Real Problem – What is/are the shortest path(s)? State  1   State  2   Start   Goal   5/5/14 23
  21. Linear  Programming  Formula'on   Start   Goal   A B

    C D E 1 1 0 0 0 1 0 1 0 1 0 0 0 1 1 M = 5 edges 3 paths One column per edge One row per path u = A B C D E x = Vector of initial edge costs a b c d e Vector of allocated costs max z such that M*(u+x) ≥ z ≥ 0 1* x = K > 0, x ≥ 0 5/5/14 24
  22. Example  strategies   §  Which  edges  are  “best”  to  invest

     in?    Suppose  budget  =  1.       §  Analysis  has  shown  that  op'mal  investments  are  ul'mately  in  a  “cut  set”   Start   Goal   Cost = 2 4 1 5 2 Simple Example – Shortest path in yellow Start   Goal   Cost = 2 4 1+1=2 5 2 “Harden” the weakest link? Start   Goal   Cost = 2 4 1 5 2 Simple Example – Shortest path in yellow If possible, invest in minimal cut set edges Start   Goal   2+1=3 4 1 5 2 “Harden” selected cut set edges cut set 5/5/14 25
  23. Back  to  Real  System   Start   Goal   37

    edges 180 paths 12 nodes Multiple edges mean multiple attack steps possible Matrix M has 37 columns and 180 rows 5/5/14 26
  24. •  Result shows benefit from hardening multiple paths according to

    iterative algorithm •  X-axis shows total budget, Y-axis shows investment in hardening specific paths •  As budget increases, the defensive strategy is diversified, but investment into minimal cut edges continues •  Once the inputs to state 2 are hardened, investment begins in edges 20 and 37 Edges 1,2 Edges 20,37 Total Defense Investment Start   Goal   Linear  Programming  Results  Iden'fy  High  Value   Protec'on  Paths  for  Different  Investment  Levels     5/5/14 27
  25. Minimal  cost  paths  for  adacker   •  Graph  shows  total

     cost  of   minimum-­‐cost  path   resul'ng  from  investment   strategy   •  Minimum  effort  required  by   adacker   •  Includes  ini'al  edge  costs   along  path   •  Slope  decreases  as   investment  strategy   diversifies  into  hardening   mul'ple  paths   •  “Diminishing  rate  of   return”,  ROI   5/5/14 28 Total Defense Investment
  26. Role  of  minimal  cut  sets   Start   Goal  

    Each edge has cost 1 You have a budget of 1 5/5/14 29
  27. Role  of  minimal  cut  sets   Start   Goal  

    Invest that 1 unit here But this is the minimal cut set 5/5/14 30 Each edge has cost 1 You have a budget of 1
  28. Role  of  minimal  cut  sets   Start   Goal  

    Now invest in the minimal cut set 2 5/5/14 31
  29. “Asympto'c”  Adack  Graph  Theorem  (Cybenko)   If  we  are  given

     an  adack  graph  with   •  a  minimal  cut  set  that  has  e  edges   •  a  large  investment  budget,  K   then   •  the  op'mal  budget  alloca'on  assigns  ≈  K/e  to   each  edge  in  the  cut  set  and;   •  the  minimal  cost  path  grows  like  c  +  K/e   where  c  is  a  constant   5/5/14 32
  30. •  Theorem states that optimal investment is eventually K/e in

    minimal cut set edges •  Initially, optimal investments can occur in other edges Edges 1,2 Edges 20,37 Total Defense Investment Linear Programming Results Identify High Value Protection Paths for Different Investment Levels Start   Goal   5/5/14 33
  31. Back  to  Real  System   Start   Goal   37

    edges 180 paths 12 nodes e = 6, cut set Multiple edges mean multiple attack steps possible Matrix M has 37 columns and 180 rows 5/5/14 34
  32. Adversarial  Dynamics  Takeaways  1/2   •  “Big  data”  needed  

    –  Red  and  blue  forces’  data  sets  are  needed   –  New,  non-­‐sta'onary  sta's'cs  and  es'ma'on  are  key   –  Adapta'on,  not  sta'c  equilibria,  describe  “solu'ons”   •  “Hidden  data”  needed   –  Need  to  capture  what  players/agents  think,  not  just   the  outcomes   •  An'cipa'ng  moves  is  the  way  to  gain  advantage   –  Kasparov  who  can  think  5-­‐6  moves  ahead   5/5/14 35
  33. References   1.  Cybenko,  Landwehr,  “Security  Analy'cs  and   Measurements”,

     IEEE  S&P  ,  May-­‐June  2012   hdp://'nyurl.com/securityanaly'cs     2.  Bilar,  Murphy,  Cybenko,  “Conficker  Case  Study”,  in  MTD  II   (ed.  Jajodia),  2012  hdp://'nyurl.com/confickerQAG     3.  Saltaformaggio,  Bilar  “ABCD-­‐ACP”,  ICCC3  NATO  CCD  COE,   2011  hdp://'nyurl.com/ICCC3     4.  Stocco,  Cybenko,  “Inverse  game  theory”,  SPIE  8359,    2012   hdp://'nyurl.com/inversegame     5.  Carin,  Cybenko,  Hughes,  “Queries  methodology”,  IEEE   Computer,  2008  hdp://'nyurl.com/queries2008     6.  Ohtsuki,  Novaw,  “Replicator  equa'ons”,  Journal  of   Theore'cal  Biology  243  (2006)  86–97   hdp://'nyurl.com/replica'onequ     5/5/14 36
  34. Thank  you     Thank  you  for  the  kind  considera'on

     of  these  ideas     We  are  happy  to  answer  ques'ons  /  field  comments  J       Contact:   •  Daniel  Bilar:  [email protected]   •  George  Cybenko:  [email protected]     •  John  Murphy:  [email protected]     5/5/14 37
  35. Oscilla'ons  as  Manifesta'on  of   Adversarial  Dynamics   •  Evolu'on

     is  a  response  to  compe''on   •  Compe''on  exists  among  adversaries   •  How  do  you  know  you  are  opera'ng  in  an  “adversarial”   domain?   –   Oscilla'ons  of  performance  metrics   •  Dynamics  can  be  modeled  by  replicator  equa'ons   –  Typically  3rd  order,  non-­‐linear  (analy'cally  difficult)   •  Inverse  problem  of  observing  behavior  and  es'ma'ng   parameters  of  replicator  equa'on  that  guide  behavior  is   tractable   •  Possible  to  observe  game  play  and  strategy  evolu'on  and   then  make  inferences  about  player’s  mo'ves,  costs  and   move  op'ons   5/5/14 39