Hacking Facial Recognition With Beards

Hacking Facial Recognition With Beards

I gave a streaming session on the IBMDeveloper Twitch about how to perform facial recognition, and the human processes involved.

0f552f8411335ac247e390aa03790990?s=128

David Okun

August 25, 2018
Tweet

Transcript

  1. @dokun24 Hacking Facial Recognition With Beards David Okun, IBM dokun24

  2. @dokun24 Agenda • Ethics In Machine Learning • Vernacular •

    Doing The Facial Recognition • Demo • Existing Challenges • Q & A
  3. @dokun24 <RANT>

  4. @dokun24 </RANT>

  5. @dokun24 First, Some Vocabulary • Face Detection • Face Verification

    • Face Identification
  6. @dokun24 The Highest Level Process • Face Detection • Image

    Normalization • Feature Extraction • Feature Matching
  7. @dokun24 Face Detection

  8. @dokun24 What is OpenCV? • Open(source) Computer Vision • Normalizes

    computer vision applications & infrastructure • Target detection, texture mapping, etc
  9. @dokun24 What is dlib? • C++ library for machine learning

    algorithms • Here, mostly for facial detection • 68 landmark points
  10. None
  11. None
  12. @dokun24 Image Normalization

  13. @dokun24

  14. None
  15. None
  16. None
  17. @dokun24 Feature Extraction

  18. @dokun24 What is TensorFlow? • High performance computation library for

    machine learning • Open source, heavily adopted • The lowest level of code needed for training CNNs
  19. @dokun24 c = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]) print(c.shape)

    ==> TensorShape([Dimension(2), Dimension(3)]) d = tf.constant([[1.0, 0.0], [0.0, 1.0], [1.0, 0.0], [0.0, 1.0]]) print(d.shape) ==> TensorShape([Dimension(4), Dimension(2)]) # Raises a ValueError, because `c` and `d` do not have compatible # inner dimensions. e = tf.matmul(c, d) f = tf.matmul(c, d, transpose_a=True, transpose_b=True) print(f.shape) ==> TensorShape([Dimension(3), Dimension(4)])
  20. @dokun24 What is Keras? • A neural network library written

    in Python • Can run on top of TensorFlow • Creates the layers that help create a feature vector
  21. @dokun24 from keras.layers import Input, Dense from keras.models import Model

    # This returns a tensor inputs = Input(shape=(784,)) # a layer instance is callable on a tensor, and returns a tensor x = Dense(64, activation='relu')(inputs) x = Dense(64, activation='relu')(x) predictions = Dense(10, activation='softmax')(x) # This creates a model that includes # the Input layer and three Dense layers model = Model(inputs=inputs, outputs=predictions) model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) model.fit(data, labels) # starts training
  22. None
  23. @dokun24 Feature Matching

  24. @dokun24 [0.0109382765, 0.0727260783, -0.0886565521, 0.106995322, -0.0263014287, -0.0352396965, -0.0471194535, 0.0224863011, 0.00886561163,

    -0.136294395, -0.00985514186, -0.0441077091, 0.0644643679, 0.0119109377, -0.00304533541, 0.00841313601, -0.0451855995, 0.0409480296, -0.0849511996, -0.046876207, 0.00489062304, -0.100049019, -0.0260294266, 0.0340725258, -0.0513369851, -0.00715692108, -0.138269156, -0.0447790548, -0.0971052274, 0.016863659, 0.0200845413, 0.0345470943, 0.0226635113, 0.0210720059, 0.0939424559, -0.0567186847, -0.0420572162, -0.00359278591, 0.0274323691, -0.0161195938, 0.0396690778, 0.0509826653, 0.100426823, -0.0316316895, -0.0500608087, -0.00339857256, -0.0342332497, 0.0790704489, -0.0289952923, 0.0568330586, -0.0285114124, 0.0588419661, -0.0434439555, 0.0621240847, 0.0360112451, 0.00799505785, -0.0279962141, -0.0449286103, 0.0152444597, 0.0455824099, -0.0581656098, -0.00988157, -0.024159437, 0.0274357516, -0.0862255767, -0.00760430517, -0.102911048, -0.0202399883, 0.00621778751, -0.0181367081, 0.0223715473, -0.125922918, -0.0999212191, -0.0126653658, -0.0358478688, -0.0665559843, 0.0375230871, -0.0261705182, -0.0212064162, 0.0475422479, -0.0623819679, 0.0129780034, 0.0282707643, 0.0232121553, -0.00730743492, -0.0821457431, 0.0655974671, -0.0265328269, 0.0388734452, 0.0616755709, -0.0121487472, -0.0232637692, -0.0545362122, 0.0236765929, -0.0611603297, 0.0797719285, -0.0404306911, 0.0323628858, -0.00949066877, -0.0609771982, -0.00158646447, 0.0596057661, -0.0802996904, 0.0247787572, 0.0387842879, 0.0258943904, -0.093511194, 0.0587848015, -0.0104612159, -0.108764656, -0.0245255344, -0.00470191566, 0.0061077862, -0.0946708396, 0.0128557365, 0.123939671, 0.0517629161, 0.0203773696, 0.0309179667, 0.0296497084, -0.0960420221, 0.0165317804, 0.0315312482, 0.0090330299, 0.0824666694, 0.137421414, 0.00069823768, -0.0312179867, 0.0248888023, -0.00145759375, -0.0291704088, -0.0118671609, 0.0213795807, -0.0371772498, 0.00247276342, 0.0654902682, -0.0687400624, 0.00264206412, 0.0854841322, -0.0100153023, -0.0529452562, 0.0973913893, 0.0627576113, 0.00176332367, -0.0661887601, -0.080224067, 0.0554779172, -0.0210913122, 0.0315915756, 0.0259354841, -0.0917198285, -0.0626271218, -0.0229110811, -0.0031353659, -0.0217538457, 0.057530541, 0.0180884395, -0.116396718, 0.0102889976, -0.0272365212, -0.0515930578, 0.0503248908, -0.0153394509, 0.0429311357, 0.0498886444, -0.0364963003, -0.00377800176, 0.0172923729, -0.0085753873, -0.000616554695, -0.0112605086, -0.0504184701, -0.0347453021, -0.0306184422, 0.0429552235, -0.126647428, 0.0414417945, 0.0330664888, 0.0490230545, -0.00483355578, -0.0539604612, -0.00565166539, -0.120982081, -0.00506902765, -0.0661799386, 0.0654867887, -0.0254629534, -0.00545939198, 0.112354159, -0.0514094941, 0.0167419966, 0.0574088842, 0.0635244325, 0.0998285115, 0.014563757, 0.0446437597, -0.0102947541, 0.0601763278, -0.022337636, 0.037583936, -0.00868016109, 0.0387439467, -0.0472361892, -0.00683514262, -0.0536096953, 0.0930362642, -0.0444846824, 0.0863161162, -0.0145008266, -0.0109270848, -0.0247354154, 0.0888869762, 0.0915196687, -0.0189450141, 0.157319754, -0.074196659, -0.0373945273, -0.0393407792, 0.110559419, -0.123502225, -0.0390469283, 0.0392427184, -0.0211585611, 0.029190179, 0.0259871911, -0.0924885496, -0.0496961176, 0.0109286346, -0.0429181717, 0.0285253581, -0.0200652219, -0.188982397, -0.0164047889, 0.0247660689, 0.0287661962, -0.0118430201, 0.0300309248, 0.0160504375, -0.00699294591, 0.0520862937, -0.0729718357, -0.0837474763, -0.0414310731, -0.096074976, 0.0275698956, -0.051039014, 0.084851712, 0.0742572099, -0.0493934005, 0.0458364189, 0.055183582, -0.0109172817, -0.0432627872, -0.0828055739, -0.0384820662, 0.0220153034, -0.00765768997, 0.0994410664, 0.017342262, -0.0428088047, -0.0226635933, 0.0442144275, -0.0242784154, -0.0128913475, 0.00506109418, 0.0339680836, 0.0699482784, 0.0170274191, 0.0268076807, -0.0130135585, -0.131615028, 0.10316924, -0.0259890705, 0.122296281, -0.0297779553, -0.0306672305, -0.0287104975, -0.048643548, -0.0360500105, -0.0858685449, -0.00986277591, -0.0646833256, -0.0840798244, 0.0136408471, 0.0169043299, -0.0971477106, -0.016923707, 0.0805660486, 0.0159345381, 0.0525551066, -0.0761455074, -0.136946559, 0.0588576943, -0.0372881182, 0.0313418806, 0.0984985977, -0.0552069917, 0.0313524827, 0.0150029277, 0.0668970719, 0.0640067905, 0.0310357977, 0.0117677432, -0.0163922533, -0.0199124962, -0.0404609703, 0.0657613128, 0.0340500884, -0.0149180656, 0.0291028358, 0.0193162505, -0.0158343688, 0.103551552, -0.0468648039, -0.0689977854, 0.0592100658, 0.037243735, 0.0348685384, -0.0724523813, 0.00524123944]
  25. @dokun24

  26. @dokun24 A Binary Result Told Three Ways • Match •

    Undetermined • No Match
  27. @dokun24

  28. @dokun24

  29. @dokun24

  30. @dokun24 DEMO

  31. @dokun24 Existing Challenges • Landmark detection with enough light •

    Different poses / insufficient training data • Occlusion / facial expressions
  32. @dokun24 https://github.com/dokun1/ CallForCodeFacialRecognition