black-box models." Journal of Business & Economic Statistics just-accepted (2019): 1-19. • Hooker, Giles, and Lucas Mentch. "Please Stop Permuting Features: An Explanation and Alternatives." arXiv preprint arXiv:1905.03151 (2019). • Molnar, Christoph. "Interpretable machine learning. A Guide for Making Black Box Models Explainable", 2019. https://christophm.github.io/interpretable-ml-book/. • Przemyslaw Biecek and Tomasz Burzykowski “Predictive Models: Explore, Explain, and Debug. Human-Centered Interpretable Machine Learning”, 2019. https://pbiecek.github.io/PM_VEE/. • Hastie, Trevor, et al. "The elements of statistical learning: data mining, inference and prediction." The Mathematical Intelligencer 27.2 (2005): 83-85. • Satoshi, Kato “How to use in R model-agnostic data explanation with DALEX & iml”. https://www.slideshare.net/kato_kohaku/how-to-use-in-r-modelagnostic-data-explanation- with-dalex-iml.