Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Accumulated Local Effects(ALE)で機械学習モデルを解釈する / TokyoR95

森下光之助
October 30, 2021

Accumulated Local Effects(ALE)で機械学習モデルを解釈する / TokyoR95

2021年10月30日に行われた、第95回R勉強会@東京(#TokyoR)での発表資料です。
https://tokyor.connpass.com/event/225967/

コードはこちらになります。
https://github.com/dropout009/tokyor95

森下光之助

October 30, 2021
Tweet

More Decks by 森下光之助

Other Decks in Science

Transcript

  1. Accumulated Local Effects
    2021/10/30
    95 R @ #TokyoR
    @dropout009

    View Slide

  2. TVISION INSIGHTS
    Twitter: @dropout009
    Speaker Deck: dropout009
    Blog: https://dropout009.hatenablog.com/

    View Slide

  3. View Slide

  4. RF/GBDT/NN
    +

    View Slide

  5. Partial Dependence

    View Slide

  6. Partial Dependence PD
    PD!
    𝑥"
    = 𝔼 &
    𝑓 𝑥"
    , 𝑿∖"
    = * &
    𝑓 𝑥"
    , 𝒙∖"
    𝑝 𝒙∖"
    𝑑𝒙∖"
    !
    𝑓(𝑿)
    𝑋!

    View Slide

  7. PD
    '
    PD!
    𝑥!
    =
    1
    𝑁
    .
    "#$
    %
    !
    𝑓(𝑥!
    , 𝒙",∖!
    )

    View Slide

  8. PD R

    View Slide

  9. PD
    𝑌 = 𝑋!
    + 𝑋"
    " + 𝜖
    𝑋!
    , 𝑋"
    ∼ Uniform 0, 1
    𝜖 ∼ 𝒩(0, 0.01")
    CDF

    View Slide

  10. tidymodels
    tidymodels rand_forest()
    Random Forest

    View Slide

  11. = 0
    PD
    PD

    View Slide

  12. = 0.99
    PD
    PD

    View Slide

  13. PD
    !
    𝑓 𝑋$
    , 𝑋(
    = 𝑋$
    + 𝑋(
    (
    PD!
    𝑥!
    = 𝔼 9
    𝑓 𝑥!
    , 𝑋"
    = 𝔼 𝑥!
    + 𝑋"
    " = !
    #
    + 𝑥!
    PD"
    𝑥"
    = 𝔼[ 9
    𝑓 𝑋!
    , 𝑥"
    ] = 𝔼 𝑋!
    + 𝑥"
    " = !
    "
    + 𝑥"
    "
    PD

    View Slide

  14. PD

    View Slide

  15. PD
    𝑋!
    𝑥!
    𝑋"
    PD! 𝑥!
    = 𝔼 &
    𝑓 𝑥!
    , 𝑋"
    = ∫ &
    𝑓 𝑥!, 𝑥" 𝑝 𝑥" 𝑑𝑥"
    PD 𝑋!

    View Slide

  16. 4 PD
    𝑋!
    𝑥!
    𝑋"
    (𝑥!,#
    , 𝑥!,!
    )
    (𝑥$,#
    , 𝑥$,!
    )
    (𝑥%,#
    , 𝑥%,!
    )
    𝑥#,#
    , 𝑥#,!

    View Slide

  17. 𝑋!
    𝑥!
    𝑋"
    𝑥#,#
    , 𝑥#,!
    (𝑥!,#
    , 𝑥!,!
    )
    (𝑥$,#
    , 𝑥$,!
    )
    -
    PD! 𝑥!
    = !
    '
    &
    𝑓 𝑥!, 𝑥!,"
    + !
    '
    &
    𝑓 𝑥!, 𝑥","
    + !
    '
    &
    𝑓 𝑥!
    , 𝑥(,"
    + !
    '
    &
    𝑓 𝑥!
    , 𝑥',"
    (𝑥%,#
    , 𝑥%,!
    )
    )
    𝑓(𝑥#
    , 𝑥!,!
    )
    )
    𝑓(𝑥#
    , 𝑥!,!
    )
    )
    𝑓(𝑥#
    , 𝑥%,!
    )
    )
    𝑓(𝑥#
    , 𝑥#,!
    )
    PD

    View Slide

  18. Conditional Dependence
    (Marginal Plot)

    View Slide

  19. PD
    𝑋!
    𝑥!
    𝑋"
    PD! 𝑥!
    = 𝔼 &
    𝑓 𝑥!
    , 𝑋"
    = ∫ &
    𝑓 𝑥!, 𝑥" 𝑝 𝑥" 𝑑𝑥"
    PD 𝑋!

    View Slide


  20. 𝑋!
    𝑥!
    𝑋"
    PD! 𝑥!
    = 𝔼 &
    𝑓 𝑥!
    , 𝑋"
    = ∫ &
    𝑓 𝑥!, 𝑥" 𝑝 𝑥" 𝑑𝑥"
    CD! 𝑥!
    = 𝔼 &
    𝑓 𝑥!
    , 𝑋"
    ∣ 𝑋!
    = 𝑥!
    = ∫ &
    𝑓 𝑥!, 𝑥" 𝑝 𝑥" ∣ 𝑥! 𝑑𝑥"

    View Slide

  21. Conditional Dependence
    𝑋!
    𝑥!
    (")
    𝑋"
    𝑥!
    (() 𝑥!
    (') 𝑥!
    (+) 𝑥!
    (,)
    𝑥!
    (!)

    View Slide

  22. CD
    *
    𝑓(
    𝑥"
    ($%&) + 𝑥"
    ($)
    2
    , 𝒙(,∖"
    )

    View Slide

  23. CD
    CD

    View Slide

  24. CD
    𝑓 𝑋!
    , 𝑋"
    = 𝑋!
    + 𝑋"
    "
    𝑋! = 𝑋"
    CD! 𝑥! = 𝔼 &
    𝑓 𝑥!, 𝑋" ∣ 𝑋! = 𝑥!
    = 𝔼 𝑥!
    + 𝑋"
    " ∣ 𝑋!
    = 𝑥!
    = 𝑥! + 𝔼 𝑋"
    " ∣ 𝑋! = 𝑥!
    = 𝑥! + 𝑥!
    "
    CD" 𝑥" = 𝔼 &
    𝑓 𝑋!, 𝑥" ∣ 𝑋" = 𝑥"
    = 𝔼 𝑋!
    + 𝑥"
    " ∣ 𝑋"
    = 𝑥"
    = 𝔼 𝑋! ∣ 𝑋" = 𝑥" + 𝑥"
    "
    = 𝑥" + 𝑥"
    "
    CD 𝑋!
    𝑋"

    View Slide

  25. Accumulated Local Effects

    View Slide

  26. ALE CD
    𝑋!
    𝑥!
    (")
    𝑋"
    𝑥!
    (() 𝑥!
    (') 𝑥!
    (+) 𝑥!
    (,)
    𝑥!
    (!)
    𝑥#,#
    , 𝑥#,!
    𝑥!,#
    , 𝑥!,!
    𝑥$,#
    , 𝑥$,!

    View Slide

  27. ALE Local Effect Accumulate
    𝑋!
    𝑥!
    (")
    𝑋"
    𝑥!
    (() 𝑥!
    (') 𝑥!
    (+) 𝑥!
    (,)
    𝑥!
    (!)
    )
    𝑓 𝑥#
    ($), 𝑥#,!
    )
    𝑓 𝑥#
    ($)
    , 𝑥!,!
    )
    𝑓 𝑥#
    ($), 𝑥!,!
    )
    𝑓 𝑥#
    (%), 𝑥#,!
    )
    𝑓 𝑥#
    (%), 𝑥!,!
    )
    𝑓 𝑥#
    (%), 𝑥!,!
    Local Effect
    1
    3
    )
    𝑓 𝑥#
    (%), 𝑥#,!
    − )
    𝑓 𝑥#
    ($), 𝑥#,!
    +
    1
    3
    )
    𝑓 𝑥#
    (%), 𝑥!,!
    − )
    𝑓 𝑥#
    ($), 𝑥!,!
    +
    1
    3
    )
    𝑓 𝑥#
    (%), 𝑥$,!
    − )
    𝑓 𝑥#
    ($), 𝑥$,!
    Local Effect

    View Slide

  28. ALE
    Local Effect
    Local Effect

    View Slide

  29. ALE
    ALE

    View Slide

  30. ALE
    𝑓 𝑋!
    , 𝑋"
    = 𝑋!
    + 𝑋"
    "
    𝑖 𝑋! [𝑥!
    (12!), 𝑥!
    (1)) Local Effect
    &
    𝑓 𝑥!
    (1), 𝑥3,"
    − &
    𝑓 𝑥!
    12! , 𝑥3,"
    = 𝑥!
    1 + 𝑥3,"
    " − 𝑥!
    12! + 𝑥3,"
    " = 𝑥!
    1 − 𝑥!
    12!
    𝑋" 𝑋!
    [𝑥!
    (12!), 𝑥!
    (1))

    View Slide

  31. ALE
    ALE Local Effect
    𝑋4
    𝜕 *
    𝑓(𝑋", 𝑿∖")
    𝜕𝑋"
    𝔼
    𝜕 *
    𝑓(𝑋", 𝑿∖")
    𝜕𝑋"
    ∣ 𝑋" = 𝑧"
    ALE" 𝑥" = ;
    +
    !
    (#$%)
    +!
    𝔼
    𝜕 *
    𝑓(𝑋", 𝑿∖")
    𝜕𝑋"
    ∣ 𝑋" = 𝑧" 𝑑𝑧"
    𝑋4 = 𝑧4
    Local Effect
    Local Effect 𝑥4
    (567) ALE

    View Slide

  32. ALE
    !
    𝑓 𝑋$
    + 𝑋(
    ( = 𝑋$
    + 𝑋(
    (
    ALE
    ALE!
    𝑥!
    = 9
    8
    9!
    𝔼
    𝜕(𝑋! + 𝑋"
    ")
    𝜕𝑋!
    ∣ 𝑋!
    = 𝑧!
    𝑑𝑧!
    = 9
    8
    9!
    𝔼 1 ∣ 𝑋! = 𝑧! 𝑑𝑧! = 9
    8
    9!
    1𝑑𝑧! = 𝑥!
    ALE"
    𝑥"
    = 9
    8
    9"
    𝔼
    𝜕(𝑋! + 𝑋"
    ")
    𝜕𝑋"
    ∣ 𝑋"
    = 𝑧"
    𝑑𝑧"
    = 9
    8
    9"
    𝔼 2𝑋" ∣ 𝑋" = 𝑧" 𝑑𝑧" = 9
    8
    9"
    2𝑧"𝑑𝑧" = 𝑥 "
    "

    View Slide

  33. View Slide


  34. • Partial Dependence ⾒
    • Accumulated Local Effects

    • ALE

    View Slide

  35. • Friedman, Jerome H. "Greedy function approximation: a gradient
    boosting machine." Annals of statistics (2001): 1189-1232.
    • Hooker, Giles, and Lucas Mentch. "Please Stop Permuting Features: An
    Explanation and Alternatives." arXiv preprint arXiv:1905.03151 (2019).
    • Apley, Daniel W., and Jingyu Zhu. "Visualizing the effects of predictor
    variables in black box supervised learning models." Journal of the Royal
    Statistical Society: Series B (Statistical Methodology) 82.4 (2020): 1059-
    1086.
    • Molnar, Christoph. "Interpretable machine learning. A Guide for Making
    Black Box Models Explainable." (2019).
    https://christophm.github.io/interpretable-ml-book/.
    • Biecek, Przemyslaw and Tomasz Burzykowski. "Explanatory Model
    Analysis. Chapman and Hall/CRC (2021). https://pbiecek.github.io/ema/.
    • .
    . . (2021).
    https://is.gd/nkYPPG

    View Slide

  36. R

    View Slide