machine." Annals of statistics (2001): 1189-1232. • Hooker, Giles, and Lucas Mentch. "Please Stop Permuting Features: An Explanation and Alternatives." arXiv preprint arXiv:1905.03151 (2019). • Apley, Daniel W., and Jingyu Zhu. "Visualizing the effects of predictor variables in black box supervised learning models." Journal of the Royal Statistical Society: Series B (Statistical Methodology) 82.4 (2020): 1059- 1086. • Molnar, Christoph. "Interpretable machine learning. A Guide for Making Black Box Models Explainable." (2019). https://christophm.github.io/interpretable-ml-book/. • Biecek, Przemyslaw and Tomasz Burzykowski. "Explanatory Model Analysis. Chapman and Hall/CRC (2021). https://pbiecek.github.io/ema/. • . . . (2021). https://is.gd/nkYPPG