Upgrade to Pro — share decks privately, control downloads, hide ads and more …

回帰分析ではlm()ではなくestimatr::lm_robust()を使おう / TokyoR100

回帰分析ではlm()ではなくestimatr::lm_robust()を使おう / TokyoR100

2022年7月23日に行われた、第100回R勉強会@東京(#TokyoR)での発表資料です。
https://tokyor.connpass.com/event/253867/

資料で使っているRコードはこちらになります。
https://github.com/dropout009/TokyoR100

森下光之助

July 23, 2022
Tweet

More Decks by 森下光之助

Other Decks in Programming

Transcript

  1. lm()
    estimatr::lm_robust()
    2022/07/23
    100 R @ #TokyoR
    @dropout009

    View Slide

  2. TVISION INSIGHTS
    Twitter: @dropout009
    Speaker Deck: dropout009
    Blog: https://dropout009.hatenablog.com/

    View Slide

  3. R
    lm()
    estimatr::lm_robust()

    View Slide

  4. lm()

    View Slide

  5. lm()
    𝑌 = 𝑋 + 𝑈
    𝑋 ∼ Uniform −2, 2
    𝑈 ∼ 𝒩(0, 1)
    N df x = runif(N, -2, 2),
    u = rnorm(N, 0, 1),
    y = x + e
    )
    𝑈 𝑋

    View Slide

  6. 𝑌!
    = 𝛼 + 𝛽𝑋!
    + 𝜖!
    lm()
    p
    lm()
    > df %>%
    + lm(y ~ x, data = .) %>%
    + tidy()
    # A tibble: 2 × 5
    term estimate std.error statistic p.value

    1 (Intercept) -0.0542 0.146 -0.371 7.12e- 1
    2 x 0.990 0.115 8.58 2.93e-11
    "
    𝛽

    View Slide




  7. View Slide

  8. N M df m = rep(seq_len(M), each = N),
    x = runif(N * M, -2, 2),
    u = rnorm(N * M, 0, 1),
    y = x + u
    )
    df_result %
    nest(data = c(x, u, y)) %>%
    mutate(result = map(data, ~ tidy(lm(y ~ x, data = .)))) %>%
    select(m, result) %>%
    unnest(c(m, result)) %>%
    filter(term == "x")
    𝑌!
    " , 𝑋!
    "
    !#$
    %
    $
    𝛼("), "
    𝛽(")
    𝑌 = 𝑋 + 𝑈
    𝑋 ∼ Uniform −2, 2
    𝑈 ∼ 𝒩(0, 1)
    "
    𝛽(")

    View Slide

  9. 6
    𝛽(")

    • SD &
    𝛽 ! , … , &
    𝛽(#)
    • *
    SE &
    𝛽 %
    &
    𝛽(%)

    View Slide

  10. lm()


    *
    SE &
    𝛽 %

    View Slide

  11. lm()

    View Slide

  12. 𝑈 𝑋
    𝑌 = 𝑋 + 𝑈
    𝑋 ∼ Uniform −2, 2
    𝑈 ∼ 𝒩(0, 𝑋,)
    N df_heterogeneous x = runif(N, -2, 2),
    u = rnorm(N, 0, abs(x)),
    y = x + u
    )
    𝑈 𝑋
    𝑋

    View Slide

  13. N M df_simulation_heterogeneous m = rep(seq_len(M), each = N),
    x = runif(N * M, -2, 2),
    u = rnorm(N * M, 0, abs(x)),
    y = x + u
    )
    df_result_heterogeneous %
    nest(data = c(x, u, y)) %>%
    mutate(result = map(data, ~ tidy(lm(y ~ x, data = .)))) %>%
    select(m, result) %>%
    unnest(c(m, result)) %>%
    filter(term == "x")

    View Slide

  14. lm()


    *
    SE &
    𝛽 %

    View Slide

  15. lm()
    lm()

    View Slide

  16. lm()

    View Slide

  17. lm()
    𝑌 = 𝑿;𝜷 + 𝑈
    𝑿 𝜷 𝐾×1
    𝑿 = 𝑋
    ;
    𝜷 = (𝛽)′
    𝔼 𝑈 ∣ 𝑿 = 0 𝜎?(𝑿)
    𝜎? 𝑿 = Var 𝑈 ∣ 𝑿 = 𝔼 𝑈? ∣ 𝑿
    𝔼 𝑌? < ∞, 𝔼 𝑿 < ∞, 𝔼 𝑿𝑿′ > 0

    View Slide

  18. 𝑌!, 𝑿! , … , 𝑌&, 𝑿& , … , 𝑌', 𝑿'
    /
    𝜷 = argmin
    𝒃
    8
    &)!
    '
    𝑌& − 𝑿&
    *𝒃 + = 8
    &)!
    '
    𝑿&𝑿&
    *
    ,!
    8
    &)!
    '
    𝑿&𝑌&
    /
    𝜷
    /
    𝜷
    @
    𝜷 = B
    !"#
    $
    𝑿!
    𝑿!
    %

    B
    !"#
    $
    𝑿!
    𝑌!
    = B
    !"#
    $
    𝑿!
    𝑿!
    %

    B
    !"#
    $
    𝑋!
    𝑿!
    %𝜷 + 𝑈!
    = 𝜷 + B
    !"#
    $
    𝑿!
    𝑿!
    %

    B
    !"#
    $
    𝑿!
    𝑈!

    View Slide

  19. 𝔼 /
    𝜷 ∣ 𝑿𝟏, … , 𝑿𝑵 = 𝔼 𝛽 + 8
    &)!
    '
    𝑿&𝑿&
    *
    ,!
    8
    &)!
    '
    𝑿&𝑈& ∣ 𝑿𝟏, … , 𝑿𝑵
    = 𝜷 + 8
    &)!
    '
    𝑿&𝑿&
    *
    ,!
    8
    &)!
    '
    𝑿&𝔼 𝑈& ∣ 𝑿&
    = 𝜷

    View Slide

  20. Var @
    𝜷 ∣ 𝑿#
    , … , 𝑿$
    = Var 𝜷 + B
    !"#
    $
    𝑿!
    𝑿!
    %

    B
    !"#
    $
    𝑿!
    𝑈!
    ∣ 𝑿#
    , … , 𝑿$
    = B
    !"#
    $
    𝑿!
    𝑿!
    %

    B
    !"#
    $
    𝑿!
    𝑿!
    %Var 𝑈!
    ∣ 𝑿!
    B
    !"#
    $
    𝑿!
    𝑿!
    %

    = B
    !"#
    $
    𝑿!
    𝑿!
    %

    B
    !"#
    $
    𝑿!
    𝑿!
    %𝔼 𝑈!
    ' ∣ 𝑿!
    B
    !"#
    $
    𝑿!
    𝑿!
    %

    = B
    !"#
    $
    𝑿!
    𝑿!
    %

    B
    !"#
    $
    𝑿!
    𝑿!
    %𝜎!
    ' B
    !"#
    $
    𝑿!
    𝑿!
    %

    𝜎&
    + = 𝜎+ 𝑿& = 𝔼 𝑈&
    + ∣ 𝑿&
    𝑖 ≠ 𝑗
    Cov 𝑈!
    , 𝑈"
    ∣ 𝑿#
    , … , 𝑿$
    = 𝔼 𝑈!
    𝑈"
    ∣ 𝑿#
    , … , 𝑿$
    = 𝔼 𝑈!
    ∣ 𝑿!
    𝔼 𝑈"
    ∣ 𝑿"
    = 0

    View Slide

  21. 𝑁 𝜎&
    + 𝜎&
    + = 𝜎+
    Var @
    𝜷 ∣ 𝑿#
    , … , 𝑿$
    = B
    !"#
    $
    𝑿!
    𝑿!
    %

    B
    !"#
    $
    𝑿!
    𝑿!
    %𝜎!
    ' B
    !"#
    $
    𝑿!
    𝑿!
    %

    ≈ B
    !"#
    $
    𝑿!
    𝑿!
    %

    B
    !"#
    $
    𝑿!
    𝑿!
    %𝜎' B
    !"#
    $
    𝑿!
    𝑿!
    %

    = 𝜎' B
    !"#
    $
    𝑿!
    𝑿!
    %

    𝜎+
    𝑠' =
    1
    𝑁 − 𝐾
    B
    !"#
    $
    @
    𝑈!
    ' =
    1
    𝑁 − 𝐾
    B
    !"#
    $
    𝑌!
    − 𝑿!
    % @
    𝜷 '
    N
    Var @
    𝜷 ∣ 𝑿#
    , … , 𝑿$
    = 𝑠' B
    !"#
    $
    𝑿!
    𝑿!
    %

    lm()

    View Slide

  22. 𝑌 = 𝛼 + 𝛽𝑋 + 𝑈
    C
    𝛼 = D
    𝑌 − &
    𝛽𝑋
    &
    𝛽 =
    ∑&)!
    ' 𝑋& − D
    𝑋 𝑌& − D
    𝑌
    ∑&)!
    ' 𝑋& − D
    𝑋 +
    &
    𝛽
    Var &
    𝛽 ∣ 𝑋!, … , 𝑋' =
    ∑&)!
    ' 𝑋& − D
    𝑋 +𝜎&
    +
    ∑&)!
    ' 𝑋& − D
    𝑋 + +
    =
    1
    ∑&)!
    ' 𝑋& − D
    𝑋 +
    ∑&)!
    ' 𝑋& − D
    𝑋 +𝜎&
    +
    ∑&)!
    ' 𝑋& − D
    𝑋 +
    Var &
    𝛽 ∣ 𝑋!, … , 𝑋' ≈
    1
    ∑&)!
    ' 𝑋& − D
    𝑋 +
    𝜎+
    𝜎&
    + 𝜎+

    𝑋!
    − 1
    𝑋 %

    View Slide


  23. 3
    𝑌 = 𝑋 + 𝑈
    𝑋 ∼ Uniform {1, 2, 3}
    𝑈 ∼ 𝒩 0, 𝜎? 𝑋
    𝜎& 𝑋 = &
    16& if 𝑋 = 1
    16& if 𝑋 = 2
    16& if 𝑋 = 3
    𝜎& 𝑋 = &
    1& if 𝑋 = 1
    31& if 𝑋 = 2
    16& if 𝑋 = 3
    𝜎& 𝑋 = &
    31& if 𝑋 = 1
    1& if 𝑋 = 2
    16& if 𝑋 = 3
    𝑈 𝑋

    View Slide

  24. 話 ⾒
    話 ⾒

    View Slide


  25. lm()
    lm()
    0.70 0.70
    0.52 0.70
    0.84 0.69
    lm()

    View Slide

  26. Robust Standard Errors

    View Slide

  27. Var @
    𝜷 ∣ 𝑿#
    , … , 𝑿$
    = B
    !"#
    $
    𝑿!
    𝑿!
    %

    B
    !"#
    $
    𝑿!
    𝑿!
    %𝔼 𝑈!
    ' ∣ 𝑿!
    B
    !"#
    $
    𝑿!
    𝑿!
    %

    ⾒ 𝑠+
    𝑠' =
    1
    𝑁 − 𝐾
    B
    !"#
    $
    @
    𝑈!
    '
    𝔼 𝑈&
    + ∣ 𝑿& 𝑠+ /
    𝑈&
    +
    N
    Var @
    𝜷 ∣ 𝑿#
    , … , 𝑿$
    = B
    !"#
    $
    𝑿!
    𝑿!
    %

    B
    !"#
    $
    𝑿!
    𝑿!
    % @
    𝑈!
    ' B
    !"#
    $
    𝑿!
    𝑿!
    %

    Heteroskedasticity-Consistent Standard Errors Robust Standard Errors
    Robust SE HC0
    '
    𝑈!
    " 1
    𝑁
    #
    $
    ∑!%#
    $ 𝑿!𝑿!
    & '
    𝑈!
    "

    View Slide

  28. R Robust SE
    estimatr::lm_robust()

    View Slide

  29. 𝑌 = 𝑋 + 𝑈
    𝑋 ∼ Uniform −2, 2
    𝑈 ∼ 𝒩(0, 𝑋,)
    N df_heterogeneous x = runif(N, -2, 2),
    u = rnorm(N, 0, abs(x)),
    y = x + u
    )
    𝑈 𝑋
    𝑋

    View Slide

  30. estimatr::lm_robust() se_type Robust SE
    Robust SE
    estimatr::lm_robust()
    > df_heterogeneous %>%
    + estimatr::lm_robust(y ~ x, data = ., se_type = "classical") %>%
    + tidy()
    term estimate std.error statistic p.value conf.low conf.high df outcome
    1 (Intercept) 0.3456885 0.1594783 2.167621 3.517795e-02 0.02503593 0.666341 48 y
    2 x 0.8999665 0.1531487 5.876423 3.869962e-07 0.59204038 1.207893 48 y
    > df_heterogeneous %>%
    + estimatr::lm_robust(y ~ x, data = ., se_type = "HC0") %>%
    + tidy()
    term estimate std.error statistic p.value conf.low conf.high df outcome
    1 (Intercept) 0.3456885 0.1563591 2.210862 0.031843538 0.03130734 0.6600696 48 y
    2 x 0.8999665 0.2389852 3.765784 0.000453233 0.41945455 1.3804784 48 y
    lm()
    Robust

    View Slide

  31. Robust SE
    • classical Robust SE HC0
    • Robust SE 50
    *
    SE &
    𝛽 %

    View Slide

  32. • HC0
    • HC0 - HC3 ⾒
    HC2 HC3 HC0 < HC2 < HC3 HC3
    • estimatr::lm_robust() HC2 Stata HC1
    ℎ!!
    = 𝑿!
    & 3
    !'#
    $
    𝑿!
    𝑿!
    &
    (#
    𝑿!
    leverage 𝑋!
    0 ≤ ℎ!!
    ≤ 1 HC0Hansen(2022)
    HC0 3
    !'#
    $
    𝑿!
    𝑿!
    &
    (#
    3
    !'#
    $
    𝑿!
    𝑿!
    & 6
    𝑈!
    % 3
    !'#
    $
    𝑿!
    𝑿!
    &
    (#
    HC1 𝑁
    𝑁 − 𝐾
    3
    !'#
    $
    𝑿!
    𝑿!
    &
    (#
    3
    !'#
    $
    𝑿!
    𝑿!
    & 6
    𝑈!
    % 3
    !'#
    $
    𝑿!
    𝑿!
    &
    (#
    HC2 3
    !'#
    $
    𝑿!
    𝑿!
    &
    (#
    3
    !'#
    $
    𝑿!
    𝑿!
    &
    6
    𝑈!
    %
    1 − ℎ!!
    3
    !'#
    $
    𝑿!
    𝑿!
    &
    (#
    HC3 3
    !'#
    $
    𝑿!
    𝑿!
    &
    (#
    3
    !'#
    $
    𝑿!
    𝑿!
    &
    6
    𝑈!
    %
    1 − ℎ!!
    %
    3
    !'#
    $
    𝑿!
    𝑿!
    &
    (#

    View Slide

  33. Robust SE
    • HC0-HC3
    • HC1-HC3 HC0
    HC3
    *
    SE &
    𝛽 %

    View Slide

  34. View Slide

  35. • R lm() lm()
    • Robust SE
    Robust
    SE
    • R estimatr lm_robust() Robust SE
    sandwich vcovHC() lm_robust() lm()
    • Robust SE HC0, HC1, HC2, HC3
    ⾒ HC2 HC3

    View Slide

  36. View Slide

  37. • Hansen, Bruce E. "Econometrics." (2022). https://www.ssc.wisc.edu/~bhansen/econometrics/.
    • Blair G, Cooper J, Coppock A, Humphreys M, Sonnet L. (2022). estimatr: Fast Estimators for Design-
    Based Inference. https://declaredesign.org/r/estimatr/. https://github.com/DeclareDesign/estimatr.

    View Slide

  38. R

    View Slide