Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データ不足に数理モデルで立ち向かう / Japan.R 2023
Search
森下光之助
December 02, 2023
Marketing & SEO
9
5.1k
データ不足に数理モデルで立ち向かう / Japan.R 2023
2023年12月2日に行われたJapan.R 2023での発表資料です
https://japanr.connpass.com/event/302622/
森下光之助
December 02, 2023
Tweet
Share
More Decks by 森下光之助
See All by 森下光之助
tidymodelsによるtidyな生存時間解析 / Japan.R2024
dropout009
1
920
回帰分析ではlm()ではなくestimatr::lm_robust()を使おう / TokyoR100
dropout009
33
9.6k
Counterfactual Explanationsで機械学習モデルを解釈する / TokyoR99
dropout009
3
2.8k
『機械学習を解釈する技術』の紹介 / Devsumi2022
dropout009
2
3.5k
シンプルな数理モデルでビジネス課題を解決する / Japan.R 2021
dropout009
2
5.9k
テレビCMのユニークリーチを最適化する / PyData.Tokyo24
dropout009
0
1.7k
Accumulated Local Effects(ALE)で機械学習モデルを解釈する / TokyoR95
dropout009
3
8.4k
データ分析手法をシミュレーションを通して理解する / stapy74
dropout009
3
1.8k
『機械学習を解釈する技術』を紹介する / itbookslt
dropout009
4
21k
Other Decks in Marketing & SEO
See All in Marketing & SEO
検索創出型マーケティングとは?”第三者からの言葉” を活用して、キーワードの総量を増やす最新マーケティング事例を紹介
080fe121
0
140
Stop Headaches With Merged Data Content Scoring
portentint
PRO
0
330
Measure what makes an impact
myriamjessier
2
210
Advanced Core Web Vitals & User Experience Masterclass
manuelmadeddu
1
170
How to Align SEO within the Product Triangle To Get Buy-In & Support - #RIMC
aleyda
1
590
OSSのメンテナが 入門ハンズオンを なぜ・どのように作成したか
tkikuc
3
130
JavaScript SEO Training - Session #2 Auditing JS for SEO
graydotco
0
220
SEO Localization: From basics to best practices
raquelgonzalezseo
1
190
Automating SEO with AI-Driven App Scripts
pkondylis
0
320
SEO in 2025: How to Prepare for the Future of Search
ipullrank
3
2.7k
Content strategy for large websites - BrightonSEO Oct'24
diije
PRO
3
220
(再)ひとり技術広報からの脱却 / Re:Breaking away from one-man technical public relations
seike460
PRO
1
140
Featured
See All Featured
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
7k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
193
16k
A designer walks into a library…
pauljervisheath
205
24k
The Art of Programming - Codeland 2020
erikaheidi
53
13k
How to Ace a Technical Interview
jacobian
276
23k
KATA
mclloyd
29
14k
Agile that works and the tools we love
rasmusluckow
328
21k
Building Applications with DynamoDB
mza
93
6.2k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
160
15k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
12
970
Building Your Own Lightsaber
phodgson
104
6.2k
Navigating Team Friction
lara
183
15k
Transcript
2023/12/02 Japan.R 2023 #JapanR @dropout009
REVISIO CDO X: @dropout009 Speaker Deck: dropout009 Blog: https://dropout009.hatenablog.com/
None
None
CM • • CM ⾒ • CM
• GRP TRP • CM ⾒ • CM ⾒ •
• CM 1 ⾒ • CM 2 1 2 3 4 5 A 1 0 1 0 1 B 0 1 0 1 0 C 1 1 1 0 1 D 0 0 1 0 0 E 0 0 0 0 0 2 (40%) 4 (80%) 7 (140%) 8 (160%) 10 (200%) 2 (40%) 3 (60%) 4 (80%) 4 (80%) 4 (80%)
• • CM × 1% 1 1
• 206% 10 2,060 69.7%
• • 0 0 頻 ⾒ 100% lm(y ~ 0
+ x) lm(y ~ 0 + log1p(x))
• •
None
l 𝑔 l CM 𝐹 Pr 𝐹 = 𝑓 ∣
𝑔 l CM 1 ⾒ 𝑟 𝑔 = Pr 𝐹 ≥ 1 ∣ 𝑔 = 1 − Pr 𝐹 = 0 ∣ 𝑔 Pr 𝐹 = 𝑓 ∣ 𝑔 𝑟 𝑔 CM
l Poisson 𝑓 𝜆 = 1 Γ 𝑓 + 1
𝜆!𝑒"# l 𝜆 𝑔 𝜆 = 𝑔 𝑟 𝑔 = 1 − Pr 𝐹 = 0 ∣ 𝑔 = 1 − 1 Γ 0 + 1 𝑔$𝑒"% = 1 − 𝑒"% dpois(f, lambda) Poisson(𝑓 ∣ 𝜆 = 5) Poisson(𝑓 ∣ 𝜆 = 3) 1 - dpois(0, g) Poisson(𝑓 ∣ 𝜆 = 2)
l 𝑟 𝑔 = 1 − 𝑒"%
l CM ⾒ CM CM CM CM Poisson(𝑓 ∣ 𝜆
= 2.06) CM
None
l CM CM CM l CM 𝜆 CM 𝜆 CM
⾒ 𝜆 Poisson(𝑓 ∣ 𝜆 = 2) Poisson(𝑓 ∣ 𝜆 = 3) Poisson(𝑓 ∣ 𝜆 = 5)
l ⾒ ⾒ 𝜆 l 𝜆 頻 𝜆 l 𝜆
Gamma 𝜆 ∣ 𝜈, 𝜈 𝜇 = 𝜈 𝜇 & Γ 𝜈 𝜆&"'𝑒" & (# E 𝜆 = 𝜇 𝜆 dgamma(nu, nu / mu) Gamma 𝜆 ∣ 1, 1 2 Gamma 𝜆 ∣ 4, 4 2 Gamma 𝜆 ∣ 16, 16 2 𝜆 𝜆
l 𝜆 ⾒ 𝜆 Pr 𝐹 = 𝑓 ∣ 𝜇,
𝜈 = ; $ ) Pr 𝐹 = 𝑓 ∣ 𝜆 𝑝 𝜆 𝜇, 𝜈 𝑑𝜆 = ; $ ) Poisson 𝑓 ∣ 𝜆 Gamma 𝜆 𝜈, 𝜈 𝜇 𝑑𝜆 = ; $ ) 1 Γ 𝑓 + 1 𝜆!𝑒"# 𝜈 𝜇 & Γ 𝜈 𝜆&"'𝑒" & (# 𝑑𝜆 = 𝜈 𝜇 & Γ 𝑓 + 1 Γ 𝜈 ; $ ) 𝜆&*!"'𝑒" &"( ( # 𝑑𝜆 = 𝜈 𝜇 & Γ 𝑓 + 1 Γ 𝜈 Γ 𝜈 + 𝑓 𝜈 + 𝜇 𝜇 &*! ; $ ) 𝜈 + 𝜇 𝜇 &*! Γ 𝜈 + 𝑓 𝜆&*!"'𝑒" &*( ( # 𝑑𝜆 = Γ 𝜈 + 𝑓 Γ 𝑓 + 1 Γ 𝜈 𝜈 𝜈 + 𝜇 & 𝜇 𝜈 + 𝜇 ! = , ! " Gamma 𝜆 𝜈 + 𝑓, 𝜈 + 𝜇 𝜇 𝑑𝜆 = 1
l ⾒ Negative Binomial Distribution; NBD NB 𝑓 𝜇, 𝜈
= Γ 𝜈 + 𝑓 Γ 𝑓 + 1 Γ 𝜈 𝜈 𝜈 + 𝜇 & 𝜇 𝜈 + 𝜇 ! NB 𝑓 2.06,1 NB 𝑓 2.06,3 NB 𝑓 2.06,10 dnbinom(f, mu = mu, size = nu)
l ⾒ 𝑟 𝑔, 𝜈 = 1 − Pr 𝐹
= 0 ∣ 𝑔, 𝜈 = 1 − Γ 𝜈 + 0 Γ 0 + 1 Γ 𝜈 𝜈 𝜈 + 𝑔 & 𝑔 𝜈 + 𝑔 $ = 1 − 𝜈 𝜈 + 𝑔 & l 𝜈 1 - dnbinom(0, mu = g, size = nu) 𝑟 𝑔, 1 𝑟 𝑔, 3 𝑟 𝑔, 10
l 𝑟 𝑔, 𝜈 𝜈 𝜈 l 𝑟+ 𝑔+ ̂
𝜈 ̂ 𝜈 = argmin & 1 − 𝜈 𝜈 + 𝑔+ & − 𝑟′ l ̂ 𝜈 𝑟 𝑔, ̂ 𝜈 = 1 − ̂ 𝜈 ̂ 𝜈 + 𝑔 , & CM CM
l 1 ⾒ CM 3 CM ⾒ l CM 𝑓
⾒ 𝑓 + l 𝑓 + 𝑟!* 𝑔, 𝜈 = Pr 𝐹 ≥ 𝑓 ∣ 𝑔, 𝑣 = 1 − Pr 𝐹 ≤ 𝑓 − 1 ∣ 𝑔, 𝜈 = 1 − E !!-$ !"' Γ 𝜈 + 𝑓+ Γ 𝑓+ + 1 Γ 𝜈 𝜈 𝜈 + 𝑔 & 𝑔 𝜈 + 𝑔 !! 𝑓 𝑓 + 𝑟!" 𝑟#" 𝑟$" 1 - pnbinom(f - 1, mu = g, size = nu)
None
l l l l ⾒
• Goerg, Georg M. "Estimating reach curves from one data
point." (2014).