Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ナレッジグラフ推論チャレンジ2023〜生成AI時代のナレッジグラフ構築技術〜の紹介
Search
S. Egami
September 09, 2023
Technology
0
900
ナレッジグラフ推論チャレンジ2023〜生成AI時代のナレッジグラフ構築技術〜の紹介
Website:
https://challenge.knowledge-graph.jp/2023/
2023/08/29に開催された「
LODチャレンジ2023 Meet UP!!!!
」にて紹介
S. Egami
September 09, 2023
Tweet
Share
More Decks by S. Egami
See All by S. Egami
大規模言語モデルを用いたSPARQLクエリ生成の予備的実験
ease112
2
260
ナレッジグラフの基礎
ease112
2
13k
ナレッジグラフを探索するSPARQL
ease112
1
12k
【LODチャレンジ2022最優秀賞】Patient Locational Ontology-based Data (PLOD)
ease112
0
160
【LODC2022データ作成部門優秀賞】VirtualHome2KGデータセット―家庭内の日常生活行動のシミュレーション動画とナレッジグラフ―
ease112
0
200
Other Decks in Technology
See All in Technology
Claude Skillsの テスト業務での活用事例
moritamasami
1
130
Strands Agents × インタリーブ思考 で変わるAIエージェント設計 / Strands Agents x Interleaved Thinking AI Agents
takanorig
6
2.5k
ESXi のAIOps だ!2025冬
unnowataru
0
450
Introduce marp-ai-slide-generator
itarutomy
0
170
ハッカソンから社内プロダクトへ AIエージェント「ko☆shi」開発で学んだ4つの重要要素
sonoda_mj
6
2k
"人"が頑張るAI駆動開発
yokomachi
1
670
Claude Codeを使った情報整理術
knishioka
15
11k
Next.js 16の新機能 Cache Components について
sutetotanuki
0
210
Redshift認可、アップデートでどう変わった?
handy
1
120
LayerX QA Night#1
koyaman2
0
300
スクラムマスターが スクラムチームに入って取り組む5つのこと - スクラムガイドには書いてないけど入った当初から取り組んでおきたい大切なこと -
scrummasudar
0
450
Oracle Database@Google Cloud:サービス概要のご紹介
oracle4engineer
PRO
1
810
Featured
See All Featured
Unlocking the hidden potential of vector embeddings in international SEO
frankvandijk
0
140
Site-Speed That Sticks
csswizardry
13
1k
What the history of the web can teach us about the future of AI
inesmontani
PRO
0
380
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
287
14k
Rails Girls Zürich Keynote
gr2m
95
14k
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
61
47k
How to audit for AI Accessibility on your Front & Back End
davetheseo
0
130
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
GitHub's CSS Performance
jonrohan
1032
470k
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
65
35k
Transcript
ナレッジグラフ推論チャレンジ2023 〜⽣成AI時代のナレッジグラフ構築技術〜 の紹介 登壇者︓江上周作 (産総研) 運営︓⼈⼯知能学会SWO研究会・企画委員 (古崎晃司,川村隆浩,江上周作,鵜飼孝典,松下京群)
これまでのナレッジグラフ推論チャレンジ • ナレッジグラフ推論チャレンジ(2018〜) • シャーロック・ホームズのような“推理”(推論)ができるAIシステムの開 発を⽬指した技術コンテスト • チャレンジのねらい • 説明可能性(解釈可能性)を有するAI技術に関する最新技術の促進・共有
と,その分析・評価,体系化を⾏う. • チャレンジの概要 2 ホームズ の推理小説 ナレッジグラフ(知識グラフ) としてデータ化 2023/8/29 さまざまな知識/手法を用いて 事件の真相を推理し,理由を 説明するAIシステムの開発 捜査 手法 動機 DB …. 犯人はXX! なぜなら… 動機は… トリックは…
これまでのナレッジグラフ推論チャレンジ • 第1回ナレッジグラフ推論チャレンジ2018 • https://challenge.knowledge-graph.jp/2018/ • 第2回ナレッジグラフ推論チャレンジ2019 • https://challenge.knowledge-graph.jp/2019/ •
第3回ナレッジグラフ推論チャレンジ2020 • https://challenge.knowledge-graph.jp/2020/ • 第1回学⽣向け︕ナレッジグラフ推論チャレンジ2021 • https://challenge.knowledge-graph.jp/2021/ • 第1回ナレッジグラフ推論チャレンジ【実社会版】2022 • https://challenge.knowledge-graph.jp/2022/ • 国際ナレッジグラフ推論チャレンジ2023@IEEE ICSC2023 • https://ikgrc.org/2023/ 1⼩説 5⼩説 8⼩説 データ 洗練 ⾼齢者 の安全 国際化
今年度の開催背景 • ChatGPTを始めとした⼤規模⾔語モデルを⽤いた⽣成AIの開発・利 ⽤は,知識⼯学,セマンティックWeb分野への応⽤においても⼤ きな可能性がある • 課題 • 正確性が保証されない •
誤った内容が出⼒される場合がある • 根拠となる情報(出典)が暗黙的である • どのような情報を基にして出⼒されたのかが分からない • 再現性が担保されない場合がある • Webサービスとして提供されているモデルを使⽤した場合には,毎回,同様の内容が ⽣成されるとは限らない • これらは,これまでのチャレンジにおいてナレッジグラフを⽤い た説明可能なAI技術の開発・共有に取り組んできた理由でもある
開催内容 • ナレッジグラフ(KG)と⼤規模⾔語モデルの双⽅を⽤いたチャレンジ を実施 • 今年度は,上述の課題への対策と評価に関する知⾒をコミュニ ティで蓄積するために ⼤規模⾔語モデルを⽤いたナレッジグラフの構築 というタスクを課題として設定 ⽣成AI時代の新しいKG構築技術の開発を⽬指したチャレンジとして開催
https://challenge.knowledge-graph.jp/2023/
応募要領 • チャレンジタスクの設定 • ⼤規模⾔語モデルを⽤いたナレッジグラフの構築 • 応募部⾨ • 推理⼩説部⾨ •
⼀般部⾨ • 応募締め切り • 2023年12⽉末
応募部⾨︓推理⼩説部⾨ • タスク • これまでの推論チャレンジで構築・公開してきた「シャーロックホームズ の⼩説を対象としたKG」と同等のものを構築することをタスクとします. • 対象 • 公開済の8つの⼩説のKGのうち,⼀部の⼩説のKGのみを対象としても構い
ません. • 公開済の8つの⼩説のKGを正解として評価を⾏うため,これら8つ以外の⼩ 説を対象としたものは,⼀般部⾨に応募してください. • 評価 • 後⽇,「審査基準」として公開します. 現時点では, • ナレッジグラフの形式的な⼀致による判定基準 • これまでの推論チャレンジのタスクにどの程度,利⽤できるか︖ • 応募者が独⾃に設ける基準 • などを総合的に判断することを検討検討
応募部⾨︓⼀般部⾨ • タスク • 対象領域を問わない任意のKGを構築することをタスクとします • 対象 • グラフ構造で表された様々な知識を幅広く対象とします.例えば, •
オントロジーやスキーマをもたない,インスタンスレベルのトリプルのみから成るKG • オントロジーとしてのクラス定義を中⼼としたもの • オントロジーやスキーマに基づいて構築された,詳細な定義を持つKG • 評価 • ⼿法の性能単体のみではなく, • 構築されたKGの品質 • 外部知識との接続性 • 再利⽤性 • など、リソースとしての評価を含めた総合評価とします. • WikidataやDBpedia等を対象とした既存ベンチマークも参考になると思われる
勉強会資料の公開 • OpenAI APIを使った⾃然⾔語からのKG構築 • 第60回SWO研究会 企画セッションで発表 • https://github.com/KnowledgeGraphJapan/KGRC-ws- 2023/blob/main/swo60.pdf
本活動は,JSPS科研費19H04168基盤研究(B)解釈可能なAIシステムの実現に向けたナレッジグラフに基づく推 論・推定技術の体系化,および⼈⼯知能学会研究会特別⽀援⾦の助成を受けたものです.また,国⽴研究開発法 ⼈新エネルギー・産業技術総合開発機構(NEDO)の委託業務(JPNP20006)の結果得られたものです. 詳細は「推論チャレンジ」で検索 https://challenge.knowledge-graph.jp/