Shoichet Brian K Irwin John J. Zinc–a free database of commercially available compounds for virtual screening. Journal of chemical information and modeling, 2005. • [3]: Anna Gaulton, Anne Hersey, Michał Nowotka, A. Patrícia Bento, Jon Chambers, David Mendez, Prudence Mutowo, Francis Atkinson, Louisa J. Bellis, Elena Cibrián-Uhalte, Mark Davies, Nathan Dedman, Anneli Karlsson, María Paula Magariños, John P. Overington, George Papadatos, Ines Smit, Andrew R. Leach, The ChEMBL database in 2017, Nucleic Acids Research, Volume 45, Issue D1, January 2017, Pages D945–D954, https://doi.org/10.1093/nar/gkw1074 • [4]: Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. CoRR, abs/1609.02907, 2016. URLhttp://arxiv.org/abs/1609.02907. • [5]: Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? CoRR, abs/1810.00826, 2018. URLhttp://arxiv.org/abs/1810.00826. • [6]: Kevin Yang, Kyle Swanson, Wengong Jin, Connor Coley, Philipp Eiden, Hua Gao, Angel Guzman-Perez, Timothy Hopper, Brian Kelley, Miriam Mathea, Andrew Palmer, Volker422Settels, Tommi Jaakkola, Klavs Jensen, and Regina Barzilay. Analyzing learned molecular representations for property prediction. Journal of Chemical Information and Modeling, 59(8):3370–3388, Aug 2019. ISSN 1549-9596. doi: 10.1021/acs.jcim.9b00237. URL https://doi.org/10.1021/acs.jcim.9b00237 • [7]: Ertl, P., Schuffenhauer, A. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J Cheminform 1, 8 (2009). https://doi.org/10.1186/1758-2946-1-8 • [8]: Zhenqin Wu, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S. Pappu, Karl Leswing, and Vijay S. Pande. Moleculenet: A benchmark for molecular machine learning. CoRR,abs/ 1703.00564, 2017. • [9]: Chang-Ying Ma, Sheng-Yong Yang, Hui Zhang, Ming-Li Xiang, Qi Huang, Yu-Quan Wei. Prediction models of human plasma protein binding rate and oral bioavailability derived by using GA–CG–SVM method. Journal of Pharmaceutical and Biomedical Analysis, Volume 47, Issues 4–5, 2008, Pages 677-682. • [10]: Carbon-Mangels, M. and Hutter, M.C. (2011), Selecting Relevant Descriptors for Classification by Bayesian Estimates: A Comparison with Decision Trees and Support Vector Machines Approaches for Disparate Data Sets. Mol. Inf., 30: 885-895. https://doi.org/10.1002/minf.201100069 • [11]: Shuangquan Wang, Huiyong Sun, Hui Liu, Dan Li, Youyong Li, and Tingjun Hou. Admet evaluation in drug discovery. Predicting herg blockers by combining multiple pharmacophores and machine learning approaches. Molecular Pharmaceutics, 13(8):2855–2866, 2016. PMID:27379394. • [12]: Youjun Xu, Ziwei Dai, Fangjin Chen, Shuaishi Gao, Jianfeng Pei, and Luhua Lai. Deep learning for drug- induced liver injury. Journal of Chemical Information and Modeling, 55(10):2085–2093, 2015. PMID:26437739. • [13]: Mark Wenlock and Nicholas Tomkinson. Experimental in vitro dmpk and physicochemical data on a set of publicly disclosed compounds. DOI: 10.6019/CHEMBL3301361 • [14]: Dominique Douguet. Data sets representative of the structures and experimental properties of fda- approved drugs. ACS Medicinal Chemistry Letters, 9(3):204–209, 2018.