Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Propaganda Battle with Two-Component Agenda

Propaganda Battle with Two-Component Agenda

MACSPro'2019 - Modeling and Analysis of Complex Systems and Processes, Vienna
21 - 23 March 2019

Alexander Petrov, Olga Proncheva

Conference website http://macspro.club/

Website https://exactpro.com/
Linkedin https://www.linkedin.com/company/exactpro-systems-llc
Instagram https://www.instagram.com/exactpro/
Twitter https://twitter.com/exactpro
Facebook https://www.facebook.com/exactpro/
Youtube Channel https://www.youtube.com/c/exactprosystems

Exactpro
PRO

March 23, 2019
Tweet

More Decks by Exactpro

Other Decks in Research

Transcript

  1. Moscow Institute of Physics and Technology
    MIPT / PHYSTECH

    View Slide

  2. Propaganda Battle with Two-Component Agenda
    A.P. Petrov (KIAM RAS), O.G. Proncheva (MIPT)
    22.03.2019

    View Slide

  3. Propaganda battle
    3
    Parties: broadcast their messages via mass-media
    Individuals: communicate, share their approvals, may toggle their support to the
    other party
    Population
    Supporters of the Party L Supporters of the Party R
    Bush Kerry
    Security 18.3 12.2
    Economy 24.5 35.7
    Press release topic frequencies
    (% of the candidate’s releases)
    for Bush for Kerry
    Security 86 14
    Economy 20 80
    % of the voters who believed that
    security/economy issue is more important

    View Slide

  4. 4
    φ
    a person’s
    predisposition towards
    a given object
    ψ(t)
    dynamic component,
    the same for all
    members
    The latent position of
    the individual:
    φ+ψ(t)>0 party R
    φ+ψ(t)<0 party L
    One - dimensional case
    Two - dimensional case
    g(φ
    1

    1
    )+(1- g)(φ
    2

    2
    )>0 party R
    g(φ
    1

    1
    )+(1- g)(φ
    2

    2
    )<0 party L
    {g ,1-g} is refer to as the agenda, characterizes the significance of the topics in comparison
    with each other
    Model
    The latent position of the individual:

    View Slide

  5. 5
    R – the number of Party R supporters
    L – the number of party L supporters
    n(φ) – the distribution of attitudes
    among individuals
    bR
    – the intensity of propaganda of
    party R
    bL
    – the intensity of propaganda of
    party L
    N0
    – the entire number of individuals
    Initial condition:
    Basic model
     
       
     
     
       
     
       
    t
    t
    R L
    R t n d
    L t n d
    d
    C R L b b a
    dt


      
      

      



    


        
     
     


     
     
    0
    2 R L
    t
    d
    C n d N b b a
    dt


      


     
     
        
     
     
     

     
     
     
    0
    0
    n d R

     




    View Slide

  6. 6
    Workhorse model
       
         
     
        
    1 1
    2 2
    1
    1 1 1 1 2 1 2 1 2 1 2
    2
    2 2 2 1 2 1 2 1 2 1 2
    1 1
    1 1 2 2
    1 1 1 2 2 1 1
    1 1
    , ,
    1 , ,
    1
    : 1 0, 0
    :
    R L
    R L
    R L
    R L
    L R
    L R L R
    d
    a b b gC N d d N d d
    dt
    d
    a b b g C N d d N d d
    dt
    dg b b
    kg g g
    dt b b b b
    R g g
    L g
     

     
                  
     
     
     

     
                   
     
     
     

      
     
      
     
                

     
     
        
        
        
    1 2 2 1 1
    2 1 1 2 2 2 2
    2 1 1 2 2 2 2
    1 0, 0
    : 1 0, 0
    : 1 0, 0
    g
    R g g
    L g g
               
                
                
     
        
     
        
    1 1 2 2
    1 1 2 2
    1 2 1 2
    1 0
    1 2 1 2
    1 0
    ,
    ,
    g g
    g g
    R N d d
    L N d d
          
          
        
        
    
    

    View Slide

  7. Influence of the parameters
    Parameters Initial advantage
    С is great enough important
    a is great enough unimportant
     
     
    0
    2
    R L
    t
    d
    C n d N b b a
    dt 

      


     
        

     
     
    If one of the parties has some advantage in the number of
    supporters, will it increase over time or not?

    View Slide

  8. 8
    is asymptotically stable if is negative
    Stability of the equilibrium state:
    • low C
    • high a
    • high M

    The simplest case
    0
    1 2
    g 
     
         
     
    2 3 2
    0 0 0 0 0
    0
    0
    2 1 4 1 2
    2 1
    g g g g g
    f g
    g
         


    1 2
    0
           
    0 0
    2
    a CN M f g
       
     
     
    2
    0 1 2
    1 1 2 2 1 2
    1 2
    / 4 , ,
    ; ; ,
    0,
    R L R L
    N M M M
    b b b b N
    M or M
        

         
       


    View Slide

  9. 9
    •on each battlefield the party that has allocated the most soldiers will win
    •neither party knows how many soldiers the opposing party will allocate to each battlefield
    •both parties seek to maximize the number of battlefields they expect to win
    σ - the degree of homogeneity of the support
    p - polarization
    The Blotto game
       
     
    1 2
    0 0 0
    0 0.5
    g
     
     

    1 2
    1 2
    5
    6
    R R
    L L
    b b
    b b
     
     
     
       
    2
    1
    2
    2 2
    2 2 2
    1 2 2 2
    1 1 1
    , e exp exp
    2 2 2 2 2 2 2
    p p
    N
     


     

     
     
       
       
     
         
       
       
           
     
       
     

    View Slide

  10. The outcome of the battle
    10
    0+5 1+4 2+3 3+2 4+1 5+0
    0+6 0,16 0,32 0,46 0,52 0,49 0,33
    1+5 0,03 0,16 0,28 0,33 0,27 0,01
    2+4 -0,09 0,06 0,17 0,20 0,09 -0,26
    3+3 -0,14 0,03 0,16 0,18 0,02 -0,39
    4+2 -0,13 0,10 0,28 0,33 0,15 -0,30
    5+1 0,03 0,35 0,57 0,62 0,48 0,05
    6+0 0,40 0,73 0,73 0,87 0,79 0,52
       ,
    L t R t t
      
    1 2
    R R
    b b

    1 2
    L L
    b b

    View Slide

  11. Thank you for your
    attention!
    [email protected]
    11

    View Slide