Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Rustでディープラーニング
Search
Kazumasa Yamamoto
February 25, 2021
0
350
Rustでディープラーニング
Kazumasa Yamamoto
February 25, 2021
Tweet
Share
More Decks by Kazumasa Yamamoto
See All by Kazumasa Yamamoto
ユニークビジョンの Rust 活用事例
fill9120
0
1.1k
Rust & AWS X-Ray による分散トレーシングの実現
fill9120
0
2.3k
Rust製プロダクトを 3年以上運用して得たノウハウ
fill9120
0
810
Messaging APIを駆使した ChatGPT ボットのUX改善
fill9120
0
340
Rust を開発言語として採用してからの取り組み
fill9120
1
1.8k
ストラクチャードコミュニケーション
fill9120
0
96
Cloudflare PagesにVue.jsアプリをデプロイしてみた
fill9120
0
720
Rustで定数式を扱う
fill9120
0
390
LINE BotとLIFFを使って謎解きアプリを作った話
fill9120
0
600
Featured
See All Featured
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
26
1.9k
The Art of Programming - Codeland 2020
erikaheidi
53
13k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
A better future with KSS
kneath
238
17k
Embracing the Ebb and Flow
colly
84
4.5k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.2k
Facilitating Awesome Meetings
lara
51
6.2k
Automating Front-end Workflow
addyosmani
1366
200k
Making the Leap to Tech Lead
cromwellryan
133
9k
Fashionably flexible responsive web design (full day workshop)
malarkey
406
66k
Building a Scalable Design System with Sketch
lauravandoore
460
33k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.1k
Transcript
Rustでディープラーニング ユニークビジョン株式会社 山本 一将
自己紹介 2 ⚫ 名前:山本 一将(@kyamamoto9120) ⚫ 所属:ユニークビジョン株式会社 ⚫ 言語:C++, Rust,
Python, Ruby ⚫ 趣味:将棋、キャンプ、DIY、野球観戦 ⚫ 実績:2015年 世界コンピュータ将棋選手権9位
はじめに 3 ① このスライドはconnpassにて公開します ② 実際の利用方法はQiitaに書きました
ディープラーニングの背景 4 ⚫ 学習・推論ともにPythonでの例がほとんど • ライブラリ・プラットフォームが充実している • 情報も多く、初学者にも優しい ⚫ 一方、C++は使われるケースがある
• TensorFlow Servingのような推論環境 • 囲碁、将棋のようなゲームAI
Rustにおけるディープラーニング 5 ⚫ パフォーマンスが要求される場面で使いたい • C++は辛すぎる ⚫ 有名フレームワークのRustバインディングはある! • 情報は皆無
• ドキュメントも乏しい
有名フレームワークのRustバインディング 6 TensorFlow PyTorch tensorflow crate tch 公式 提供元 非公式
2.9k Star 942 ◦ GPUサポート ◦ ◦ モデル構築 ◦ ◦ 学習 ◦ ◦ Python製モデルで推論 ?
それぞれ使ってみた感想 7 ⚫ 環境構築 • CPUでちょっと使ってみるだけならtchが簡単 • 本格的に使う場合は差はない ⚫ モデル構築
• tchはPythonと比較的近いインタフェースで構築可能 • tensorflowは苦行 • 学習をRustでする場合でもモデル構築はPythonで行うべき
それぞれ使ってみた感想 8 ⚫ 学習 • tchはデータセットを扱う便利関数がある • tchには転移学習のサンプルもあって実用的 • tensorflowはサンプルだけでは何とも言えない
⚫ 事前学習済みモデルでの推論 • tensorflowはPythonで学習した重みを利用可能 • tchはPythonで学習した重みが使えるかは不明 • サンプルではOCaml版のモデルを使っている
まとめ 9 ⚫ Rustでもディープラーニングは可能 ⚫ ディープラーニング初学者が試しに使うならtch! ⚫ 推論のみ高速化するならtensorflow! ⚫ C++の代替として普及して欲しい
ありがとうございました