solution operator SOL : F → G, input space F contains functions defined on Ω ⊆ Rd e.g., SOL(f) = f, −∇2 SOL(f) = f, SOL(f) = 0 on boundary Approximation APP(f, n) = n i=1 Li (f)gi , can sample linear functionals SOL(f) − APP(f, n) G SOL − APP(·, n) F→G f F Algorithm ALG(f, ε) = APP f, n∗(f, ε) satisfying SOL(f) − ALG(f, ε) G ε for all f ∈ C ⊂ F Solvability: what C? how to determine n∗(f, ε) ∈ N? n∗(f, ε) = min{n : SOL − APP(·, n) F→G ε/R} if f ∈ of radius R Alternatively, assume f ∈ and bound f F or equivalent What you do not see is not much worse than what you see? H., F. J., Jiménez Rugama, & Li, D. in Contemporary Computational Mathematics — a celebration of the 80th birthday of Ian Sloan (eds Dick, J., Kuo, F. Y. & Woźniakowski, H.) 597–619 (Springer-Verlag, 2018), Kunsch, R. J., Novak, E. & Rudolf, D. Solvable Integration Problems and Optimal Sample Size Selection. Journal of Complexity. To appear (2018), Ding, Y., H., F. J. & Jiménez Rugama, An Adaptive Algorithm Employing Continuous Linear Functionals. in Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Rennes, France, July 2018 (eds L’Ecuyer, P. & Tuffin, B.) Under revision (Springer-Verlag, Berlin, 2019+). 2/14