M. McCourt, and A. Sorokin, QMCPy: A quasi- Monte Carlo Python library (versions 1–1.5), 2024. [DKP22] J. Dick, P. Kritzer, and F. Pillichshammer, Lattice rules: Numerical integration, approximation, and discrepancy, Springer Series in Computational Mathematics, Springer Cham, 2022. [DP10] J. Dick and F. Pillichshammer, Digital nets and sequences: Discrepancy theory and quasi-Monte Carlo integration, Cambridge University Press, Cambridge, 2010. GKS23] A. D. Gilbert, F. Y. Kuo, and I. H. Sloan, Analysis of preintegration followed by quasi-Monte Carlo integration for distribution functions and densities, SIAM J. Numer. Anal. 61 (2023), 135–166. [G13] M. Giles, Multilevel Monte Carlo methods, Monte Carlo and Quasi-Monte Carlo Methods 2012 (J. Dick, F. Y. Kuo, G. W. Peters, and I. H. Sloan, eds.), Springer Proceedings in Mathematics and Statistics, vol. 65, Springer-Verlag, Berlin, 2013. [G04] P. Glasserman, Monte Carlo methods in fi nancial engineering, Applications of Mathematics, vol. 53, Springer-Verlag, New York, 2004.