Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MoAコンペで気づいたこと
Search
fkubota
December 19, 2020
Programming
1
780
MoAコンペで気づいたこと
fkubota
December 19, 2020
Tweet
Share
More Decks by fkubota
See All by fkubota
相対性理論の入門の入門
fkubota
0
79
データドリブンな組織の不正検知
fkubota
0
2.3k
JupyterNotebookでのdebug入門(サンプルは説明欄にあります)
fkubota
6
13k
ルールベース画像処理のススメ
fkubota
17
16k
Kaggle日記について
fkubota
2
2.7k
鳥コンペで惨敗した話とコンペの取り組み方
fkubota
1
6.8k
クロマベクトルって何?
fkubota
1
2.5k
生産性と戦った僕の1年の記録とツールたち
fkubota
6
6.7k
Other Decks in Programming
See All in Programming
それ、本当に安全? ファイルアップロードで見落としがちなセキュリティリスクと対策
penpeen
6
1.8k
Kotlin Multiplatform Meetup - Compose Multiplatform 외부 의존성 아키텍처 설계부터 운영까지
wisemuji
0
160
AI前提で考えるiOSアプリのモダナイズ設計
yuukiw00w
0
210
AIの誤りが許されない業務システムにおいて“信頼されるAI” を目指す / building-trusted-ai-systems
yuya4
7
4.3k
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
650
ゆくKotlin くるRust
exoego
1
190
Spinner 軸ズレ現象を調べたらレンダリング深淵に飲まれた #レバテックMeetup
bengo4com
1
210
The Art of Re-Architecture - Droidcon India 2025
siddroid
0
160
20251212 AI 時代的 Legacy Code 營救術 2025 WebConf
mouson
0
240
CSC307 Lecture 02
javiergs
PRO
1
750
AIエージェントの設計で注意するべきポイント6選
har1101
6
3k
ThorVG Viewer In VS Code
nors
0
600
Featured
See All Featured
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Technical Leadership for Architectural Decision Making
baasie
0
200
技術選定の審美眼(2025年版) / Understanding the Spiral of Technologies 2025 edition
twada
PRO
115
100k
Making Projects Easy
brettharned
120
6.5k
Claude Code のすすめ
schroneko
67
210k
How to make the Groovebox
asonas
2
1.9k
JAMstack: Web Apps at Ludicrous Speed - All Things Open 2022
reverentgeek
1
300
Efficient Content Optimization with Google Search Console & Apps Script
katarinadahlin
PRO
0
280
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
330
GraphQLとの向き合い方2022年版
quramy
50
14k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Music & Morning Musume
bryan
46
7k
Transcript
MoAコンペで気づいたこと fkubota https://www.kaggle.com/fkubota
さっそくですが モデルの性能をtarget_columnごとで評価したことありますか? 僕はあります。 今回のコンペのmetricを見てみましょう。 これを変形してみます。 https://www.kaggle.com/c/lish-moa/overview/evaluation
row方向 column方向 mのみに依存
各カラム毎にscoreを出力できた!
ターゲットカラム毎に評価はできました。 1つ1つ結果を確認するのもいいですが、 もう少しおもしろいことをしましょう。
1の数(n)を数えてみる 17 18 24 190 301 仮説: nが小さいほど(学習が困難になって)lossが大きいのでは? n =
n vs logloss でプロット nが小さいほどうまく学習ができていない? ---> nが小さいほどloglossは大きくなる? 右のグラフを見る限りそうでもない。 仮説は否定された。なんでこうなるの? あと、右上に単調増加する意味ありげな形
これはなにかあるぞ。。。
そもそも、nが1とかだったら、 モデルに予測させるのではなく、 全部0埋めすればいいのでは? こいつら学習させることで きるんですか?
0で埋めるのが最適かはわからない。 0に近い値で埋めたほうがいいのは確か。 どの程度の一定値で埋めればいい? n=1, 2, 3, 4, 5のときに、様々な一定値で埋めて score_colを計算した。 横軸は、埋めた一定値の値。
縦軸はscore_col の値。 最適な一定値はnによって変わる。
実はこの最適な一定値は解析的に計算できる。 簡単に紹介(自分で計算してみてね)。
score_colを最小とするようなCをC_0とする (記号の雑さ、数学的な厳密性の欠如は今は目を瞑ってください m(_ _)m) これを解くと... 美しい感じの解出た! 直感的!!
求めた解を使って、nごとにプロットしてみる おっ??
いっしょにプロット おおおおおおお!
つまり? 計算したloglossを赤色でプロットした。 見事に一致している部分が多くある。 赤色と重なっている青い部分はこう解釈できる。 「1は予測できないが、たまに1がtargetにある。すべて0 にpredictしてしまうとペナルティが大きくなってしまうの で、ちょうどいい感じの値を出しておこう」 モデルは、1を頑張って予測しようとしているのではな く、ペナルティが最小限になるような値を出力しているに 過ぎないと言える。
赤い線に近い値を取っているカラムは 全く学習していない!!!
シェイクの予感 - ほとんどの参加者は、この事に気づいていない - スコアに大きな影響があるのはnが大きいターゲット - おそらくほとんどのモデルはnが小さいターゲットはほとんど学習で きていない - モデルは、nが小さなターゲットではn(1が何個含まれているか?)し
か見ていない。 - testとtrainでnの数に大きな差があれば性能は極端に落ちる。 nが小さいtargetで性能を出せればシェイクアップはできる!!
コンペ後半は、n<200の部分だけの性能アップに注力 - focal loss - mixup - LabelSmoothing - etc….
mixupが一番効く!!
cool_rabbitさんによる実験 黄色: mixup なし 青色: mixupあり 良くなってる 悪くなってる アンサンブルの時、 このモデルはN<200
の部分だけを使うなどの工 夫をした
シェイクアップ!!!!
None