Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MoAコンペで気づいたこと
Search
fkubota
December 19, 2020
Programming
1
760
MoAコンペで気づいたこと
fkubota
December 19, 2020
Tweet
Share
More Decks by fkubota
See All by fkubota
相対性理論の入門の入門
fkubota
0
45
データドリブンな組織の不正検知
fkubota
0
2.1k
JupyterNotebookでのdebug入門(サンプルは説明欄にあります)
fkubota
6
13k
ルールベース画像処理のススメ
fkubota
17
15k
Kaggle日記について
fkubota
2
2.6k
鳥コンペで惨敗した話とコンペの取り組み方
fkubota
1
6.7k
クロマベクトルって何?
fkubota
1
2.3k
生産性と戦った僕の1年の記録とツールたち
fkubota
6
6.6k
Other Decks in Programming
See All in Programming
階層化自動テストで開発に機動力を
ickx
1
470
AIに安心して任せるためにTypeScriptで一意な型を作ろう
arfes0e2b3c
0
330
リバースエンジニアリング新時代へ! GhidraとClaude DesktopをMCPで繋ぐ/findy202507
tkmru
7
1.7k
SwiftでMCPサーバーを作ろう!
giginet
PRO
2
220
Workers を定期実行する方法は一つじゃない
rokuosan
0
140
商品比較サービス「マイベスト」における パーソナライズレコメンドの第一歩
ucchiii43
0
260
Git Sync を超える!OSS で実現する CDK Pull 型デプロイ / Deploying CDK with PipeCD in Pull-style
tkikuc
4
520
CEDEC 2025 『ゲームにおけるリアルタイム通信への QUIC導入事例の紹介』
segadevtech
2
730
Claude Code派?Gemini CLI派? みんなで比較LT会!_20250716
junholee
1
800
バイブコーディング超えてバイブデプロイ〜CloudflareMCPで実現する、未来のアプリケーションデリバリー〜
azukiazusa1
3
780
AIのメモリー
watany
12
1.2k
プロダクトという一杯を作る - プロダクトチームが味の責任を持つまでの煮込み奮闘記
hiliteeternal
0
370
Featured
See All Featured
Statistics for Hackers
jakevdp
799
220k
Docker and Python
trallard
45
3.5k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
Why You Should Never Use an ORM
jnunemaker
PRO
58
9.5k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
1k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
790
Making Projects Easy
brettharned
117
6.3k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Unsuck your backbone
ammeep
671
58k
Art, The Web, and Tiny UX
lynnandtonic
301
21k
Transcript
MoAコンペで気づいたこと fkubota https://www.kaggle.com/fkubota
さっそくですが モデルの性能をtarget_columnごとで評価したことありますか? 僕はあります。 今回のコンペのmetricを見てみましょう。 これを変形してみます。 https://www.kaggle.com/c/lish-moa/overview/evaluation
row方向 column方向 mのみに依存
各カラム毎にscoreを出力できた!
ターゲットカラム毎に評価はできました。 1つ1つ結果を確認するのもいいですが、 もう少しおもしろいことをしましょう。
1の数(n)を数えてみる 17 18 24 190 301 仮説: nが小さいほど(学習が困難になって)lossが大きいのでは? n =
n vs logloss でプロット nが小さいほどうまく学習ができていない? ---> nが小さいほどloglossは大きくなる? 右のグラフを見る限りそうでもない。 仮説は否定された。なんでこうなるの? あと、右上に単調増加する意味ありげな形
これはなにかあるぞ。。。
そもそも、nが1とかだったら、 モデルに予測させるのではなく、 全部0埋めすればいいのでは? こいつら学習させることで きるんですか?
0で埋めるのが最適かはわからない。 0に近い値で埋めたほうがいいのは確か。 どの程度の一定値で埋めればいい? n=1, 2, 3, 4, 5のときに、様々な一定値で埋めて score_colを計算した。 横軸は、埋めた一定値の値。
縦軸はscore_col の値。 最適な一定値はnによって変わる。
実はこの最適な一定値は解析的に計算できる。 簡単に紹介(自分で計算してみてね)。
score_colを最小とするようなCをC_0とする (記号の雑さ、数学的な厳密性の欠如は今は目を瞑ってください m(_ _)m) これを解くと... 美しい感じの解出た! 直感的!!
求めた解を使って、nごとにプロットしてみる おっ??
いっしょにプロット おおおおおおお!
つまり? 計算したloglossを赤色でプロットした。 見事に一致している部分が多くある。 赤色と重なっている青い部分はこう解釈できる。 「1は予測できないが、たまに1がtargetにある。すべて0 にpredictしてしまうとペナルティが大きくなってしまうの で、ちょうどいい感じの値を出しておこう」 モデルは、1を頑張って予測しようとしているのではな く、ペナルティが最小限になるような値を出力しているに 過ぎないと言える。
赤い線に近い値を取っているカラムは 全く学習していない!!!
シェイクの予感 - ほとんどの参加者は、この事に気づいていない - スコアに大きな影響があるのはnが大きいターゲット - おそらくほとんどのモデルはnが小さいターゲットはほとんど学習で きていない - モデルは、nが小さなターゲットではn(1が何個含まれているか?)し
か見ていない。 - testとtrainでnの数に大きな差があれば性能は極端に落ちる。 nが小さいtargetで性能を出せればシェイクアップはできる!!
コンペ後半は、n<200の部分だけの性能アップに注力 - focal loss - mixup - LabelSmoothing - etc….
mixupが一番効く!!
cool_rabbitさんによる実験 黄色: mixup なし 青色: mixupあり 良くなってる 悪くなってる アンサンブルの時、 このモデルはN<200
の部分だけを使うなどの工 夫をした
シェイクアップ!!!!
None