Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MoAコンペで気づいたこと
Search
fkubota
December 19, 2020
Programming
1
710
MoAコンペで気づいたこと
fkubota
December 19, 2020
Tweet
Share
More Decks by fkubota
See All by fkubota
データドリブンな組織の不正検知
fkubota
0
1.9k
JupyterNotebookでのdebug入門(サンプルは説明欄にあります)
fkubota
6
12k
ルールベース画像処理のススメ
fkubota
17
15k
Kaggle日記について
fkubota
1
2.4k
鳥コンペで惨敗した話とコンペの取り組み方
fkubota
1
6.4k
クロマベクトルって何?
fkubota
1
1.9k
生産性と戦った僕の1年の記録とツールたち
fkubota
6
6.5k
Other Decks in Programming
See All in Programming
レガシーシステムにどう立ち向かうか 複雑さと理想と現実/vs-legacy
suzukihoge
14
2.2k
最新TCAキャッチアップ
0si43
0
140
Snowflake x dbtで作るセキュアでアジャイルなデータ基盤
tsoshiro
2
520
Creating a Free Video Ad Network on the Edge
mizoguchicoji
0
120
as(型アサーション)を書く前にできること
marokanatani
9
2.6k
Nurturing OpenJDK distribution: Eclipse Temurin Success History and plan
ivargrimstad
0
880
Contemporary Test Cases
maaretp
0
130
アジャイルを支えるテストアーキテクチャ設計/Test Architecting for Agile
goyoki
9
3.3k
Duckdb-Wasmでローカルダッシュボードを作ってみた
nkforwork
0
120
距離関数を極める! / SESSIONS 2024
gam0022
0
280
카카오페이는 어떻게 수천만 결제를 처리할까? 우아한 결제 분산락 노하우
kakao
PRO
0
110
OnlineTestConf: Test Automation Friend or Foe
maaretp
0
110
Featured
See All Featured
Bash Introduction
62gerente
608
210k
It's Worth the Effort
3n
183
27k
Building Adaptive Systems
keathley
38
2.3k
Code Reviewing Like a Champion
maltzj
520
39k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
27
4.3k
Building Your Own Lightsaber
phodgson
103
6.1k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
6
410
Writing Fast Ruby
sferik
627
61k
Fantastic passwords and where to find them - at NoRuKo
philnash
50
2.9k
How GitHub (no longer) Works
holman
310
140k
Speed Design
sergeychernyshev
24
610
GraphQLの誤解/rethinking-graphql
sonatard
67
10k
Transcript
MoAコンペで気づいたこと fkubota https://www.kaggle.com/fkubota
さっそくですが モデルの性能をtarget_columnごとで評価したことありますか? 僕はあります。 今回のコンペのmetricを見てみましょう。 これを変形してみます。 https://www.kaggle.com/c/lish-moa/overview/evaluation
row方向 column方向 mのみに依存
各カラム毎にscoreを出力できた!
ターゲットカラム毎に評価はできました。 1つ1つ結果を確認するのもいいですが、 もう少しおもしろいことをしましょう。
1の数(n)を数えてみる 17 18 24 190 301 仮説: nが小さいほど(学習が困難になって)lossが大きいのでは? n =
n vs logloss でプロット nが小さいほどうまく学習ができていない? ---> nが小さいほどloglossは大きくなる? 右のグラフを見る限りそうでもない。 仮説は否定された。なんでこうなるの? あと、右上に単調増加する意味ありげな形
これはなにかあるぞ。。。
そもそも、nが1とかだったら、 モデルに予測させるのではなく、 全部0埋めすればいいのでは? こいつら学習させることで きるんですか?
0で埋めるのが最適かはわからない。 0に近い値で埋めたほうがいいのは確か。 どの程度の一定値で埋めればいい? n=1, 2, 3, 4, 5のときに、様々な一定値で埋めて score_colを計算した。 横軸は、埋めた一定値の値。
縦軸はscore_col の値。 最適な一定値はnによって変わる。
実はこの最適な一定値は解析的に計算できる。 簡単に紹介(自分で計算してみてね)。
score_colを最小とするようなCをC_0とする (記号の雑さ、数学的な厳密性の欠如は今は目を瞑ってください m(_ _)m) これを解くと... 美しい感じの解出た! 直感的!!
求めた解を使って、nごとにプロットしてみる おっ??
いっしょにプロット おおおおおおお!
つまり? 計算したloglossを赤色でプロットした。 見事に一致している部分が多くある。 赤色と重なっている青い部分はこう解釈できる。 「1は予測できないが、たまに1がtargetにある。すべて0 にpredictしてしまうとペナルティが大きくなってしまうの で、ちょうどいい感じの値を出しておこう」 モデルは、1を頑張って予測しようとしているのではな く、ペナルティが最小限になるような値を出力しているに 過ぎないと言える。
赤い線に近い値を取っているカラムは 全く学習していない!!!
シェイクの予感 - ほとんどの参加者は、この事に気づいていない - スコアに大きな影響があるのはnが大きいターゲット - おそらくほとんどのモデルはnが小さいターゲットはほとんど学習で きていない - モデルは、nが小さなターゲットではn(1が何個含まれているか?)し
か見ていない。 - testとtrainでnの数に大きな差があれば性能は極端に落ちる。 nが小さいtargetで性能を出せればシェイクアップはできる!!
コンペ後半は、n<200の部分だけの性能アップに注力 - focal loss - mixup - LabelSmoothing - etc….
mixupが一番効く!!
cool_rabbitさんによる実験 黄色: mixup なし 青色: mixupあり 良くなってる 悪くなってる アンサンブルの時、 このモデルはN<200
の部分だけを使うなどの工 夫をした
シェイクアップ!!!!
None