• Reminder: MSE(θ) ≥ E[ϵ(y,θ)v(y,θ)] 2 E[v2(y,θ)] • The inequality can be sharpened by using several functions v1,...,vM, so that MSE(θ) ≥ rTV−1r with r = E ϵ(y,θ)v(y,θ) and V = E[v(y,θ)vT(y,θ)] • Improvement on HChRB (Barankin-type bounds): • vm(y,θ) = p(y|θ+hm)−p(y|θ) hm p(y|θ) [McAulay & Seidman, 1969] • v0(y,θ) = ∂lnp(y|θ) ∂θ , vm(y,θ) = p(y|θ+hm)−p(y|θ) hm p(y|θ) [McAulay & Hofstetter, 1971] Extension to the estimation of a parameter vector • For a parameter vector θ ∈ RQ, the covariance (matrix) inequality reads MSE(θ) ≽ RV−1RT R = E ϵ(y,θ)vT(y,θ) and V = E[v(y,θ)vT(y,θ)] L. Bacharach – SATIE GT ICR @ Saclay 17/11/2025 17 / 41