Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
会計freeeのデプロイを10倍早くした話
Search
freee
January 21, 2020
Technology
0
5.5k
会計freeeのデプロイを10倍早くした話
freee
January 21, 2020
Tweet
Share
More Decks by freee
See All by freee
freee + Product Design FY24 Q2
freee
4
9.5k
freeeのモバイルエンジニアについて
freee
1
210
10分でわかるfreeeのQA
freee
1
8.3k
10分でわかるfreee エンジニア向け会社説明資料
freee
18
530k
freeeの福利厚生と働き方
freee
1
66k
品質の高速フィードバックへの取り組み / Commitment to Fast Quality Feedback
freee
4
1.1k
組織作りに「プロダクト開発のエッセンス」 を取り入れ、不確実性に向き合い続ける / Incorporating the “essence of product development” into organizational development and continuing to face uncertainty
freee
0
2.8k
LGBTQ__support_WOMEN_女性として働くということ_DEI
freee
2
510
QAエンジニア_Summer Internship説明会(26卒)
freee
0
270
Other Decks in Technology
See All in Technology
20241218_今年はSLI/SLOの導入を頑張ってました!
zepprix
0
100
Microsoft Azure全冠になってみた ~アレを使い倒した者が試験を制す!?~/Obtained all Microsoft Azure certifications Those who use "that" to the full will win the exam! ?
yuj1osm
2
120
サーバーなしでWordPress運用、できますよ。
sogaoh
PRO
0
120
コンテナセキュリティのためのLandlock入門
nullpo_head
2
330
能動的ドメイン名ライフサイクル管理のすゝめ / Practice on Active Domain Name Lifecycle Management
nttcom
0
240
PHPerのための計算量入門/Complexity101 for PHPer
hanhan1978
5
670
.NET 9 のパフォーマンス改善
nenonaninu
0
1.3k
Amazon Kendra GenAI Index 登場でどう変わる? 評価から学ぶ最適なRAG構成
naoki_0531
0
130
2024年にチャレンジしたことを振り返るぞ
mitchan
0
150
KnowledgeBaseDocuments APIでベクトルインデックス管理を自動化する
iidaxs
1
280
オプトインカメラ:UWB測位を応用したオプトイン型のカメラ計測
matthewlujp
0
200
開発生産性向上! 育成を「改善」と捉えるエンジニア育成戦略
shoota
2
460
Featured
See All Featured
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
We Have a Design System, Now What?
morganepeng
51
7.3k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
48
2.2k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
159
15k
Measuring & Analyzing Core Web Vitals
bluesmoon
4
170
Fontdeck: Realign not Redesign
paulrobertlloyd
82
5.3k
Building a Modern Day E-commerce SEO Strategy
aleyda
38
7k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
Bash Introduction
62gerente
609
210k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
2
290
Designing Dashboards & Data Visualisations in Web Apps
destraynor
229
52k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
38
1.9k
Transcript
freee 株式会社 会計freeeのデプロイを10倍早くした話 2020.01.21
プロフィール HR系企業を経て2016年11月freee入社。申告freeeのリリースに携わった後、 認証基盤チームへ異動。ログインやセッション管理の改修、二段階認証の開 発等を担当しました。2019年4月よりSRE所属。 @shuheiktgw Shuhei Kitagwa
お話すること 3 04 振り返り ・ まとめ 03 モノリスへのアプローチ 02 検討した選択肢 01 会計freeeのデプロイ
4 会計freeeのデプロイ 01 Section
数字で見る会計freee 5 40+ 200k+ 1-3 +3k -1.5k Developers Commits Diffs
/day Deploy /day
6 会計freeeの構成 Nginx Phusion Passenger Ruby on Rails ELB EC2s
会計freeeのデプロイ 7 Capistrano New Code New Assets New Code New
Assets EC2s
会計freeeのデプロイ 8 Old App Old App Old App
会計freeeのデプロイ 9 Old App Old App Old App デタッチ
会計freeeのデプロイ 10 Old App Old App Old App Stop
会計freeeのデプロイ 11 Old App Old App Start
会計freeeのデプロイ 12 New App Old App Old App
会計freeeのデプロイ 13 New App Old App Old App
会計freeeのデプロイ 14 New App Old App Old App
会計freeeのデプロイ 15 New App Old App New App
会計freeeのデプロイ 16 New App Old App New App
会計freeeのデプロイ 17 New App Old App New App
会計freeeのデプロイ 18 New App New App New App
会計freeeのデプロイ 19 New App New App New App
会計freeeのデプロイ 20 New App New App New App • LBから抜く必要があるため、並列にデプロイできない
• 確定申告期など、サーバー台数が多いと50分近くかかることも
21 検討した選択肢 02 Section
検討した選択肢 22 • Elastic Kubernetes Service (EKS) への移行 • Auto
Scaling Groupを用いたBlue/Green • アプリケーション・サーバーによるホットデプロイ
Elastic Kubernetes Service (EKS) への移行 23
Elastic Kubernetes Service (EKS) への移行 24 • Pros ◦ Kubernetes
(Docker) ◦ 新規マイクロサービスを中心に本番運用実績 • Cons ◦ モノリシックなサービスをKubernetesへ移行した経験がなかった ▪ もう少し小さいサービスを先に移行させたい ◦ 当時はKubernetesのモニタリング、セキュリティ周りの統一した規格が未整備
Auto Scaling Groupを用いたBlue/Green 25 Old App
Auto Scaling Groupを用いたBlue/Green 26 Old App New App
Auto Scaling Groupを用いたBlue/Green 27 Old App New App
Auto Scaling Groupを用いたBlue/Green 28 Old App New App
Auto Scaling Groupを用いたBlue/Green 29 New App
Auto Scaling Groupを用いたBlue/Green 30 • Pros ◦ イミュータブル・インフラストラクチャの実現 ◦ 既存の構成に変更を加える必要がない
• Cons ◦ AWSがサーバーをプロビジョンする時間がボトルネックになる ◦ 常に希望通りのサーバー台数が確保される保証がない
アプリケーション・サーバーによるホットデプロイ 31 App Server Old App
アプリケーション・サーバーによるホットデプロイ 32 App Server Old App New App
アプリケーション・サーバーによるホットデプロイ 33 App Server Old App New App
アプリケーション・サーバーによるホットデプロイ 34 App Server New App
アプリケーション・サーバーによるホットデプロイ 35 • Pros ◦ 圧倒的に早い ◦ Capistranoの資産を再利用できる • Cons
◦ アプリケーション・サーバーの変更による影響範囲が大きい ◦ 遠ざかるイミュータブル・インフラストラクチャ
ホットデプロイを選択 36 • Unicornによるホットデプロイ ◦ デプロイ時間、ロールバック時間 ◦ Phusion Passengerと同じマルチプロセス &
プリフォーク
37 モノリスへのアプローチ 03 Section
課題 38 • 「会計freeeのアプリケーション・サーバーを安全に入れ替えたい」 ◦ 影響範囲が大きく、事前の完全な検証が困難 ◦ 対象ドメイン全体を完全に把握することが困難
アプローチ 39 • プランBを確保する • 変更対象 (ライブラリ等) を深く理解する • 段階的にリリースする
アプローチ 40 • プランBを確保する • 変更対象 (ライブラリ等) を深く理解する • 段階的にリリースする
プランBを確保する 41 • 不確実性の低い選択肢をプランBとして確保 • 影響範囲の小さいBlue/GreenがプランB 不確実性高 不確実性低 効果高 効果低
EKS Unicorn Blue/Green
アプローチ 42 • プランBを確保する • 変更対象 (ライブラリ等) を深く理解する • 段階的にリリースする
変更対象を深く理解する 43 • Unicornのソースコードから3点を把握 ◦ 起動からリクエストを捌き始めるまでの流れ ◦ ホットデプロイ (USR2) シグナルを受け取った場合の処理
◦ 各パラメーターの使われ方と影響範囲 • プリフォーク型のアーキテクチャであるため、forkの処理も合わせて抑える ◦ ホットデプロイでは環境変数が更新されない ◦ PreloadによるFile Descriptorの共有
PreloadによるFile Descriptorの共有 44 Master Process File Descriptor Connection Redis
PreloadによるFile Descriptorの共有 45 Master Process File Descriptor Worker Process Worker
Process
PreloadによるFile Descriptorの共有 46 Master Process File Descriptor Worker Process Worker
Process
PreloadによるFile Descriptorの共有 47 Master Process File Descriptor Worker Process Worker
Process
PreloadによるFile Descriptorの共有 48 Master Process File Descriptor Worker Process Worker
Process File Descriptor File Descriptor
PreloadによるFile Descriptorの共有 49 • Linuxのforkの処理が正しく理解できていれば事象の原因、対策が打てる ◦ 親子間でOpen File Tableがコピーされる ◦
同じFile Descriptorへの参照を保持している
アプローチ 50 • プランBを確保する • 変更対象 (ライブラリ等) を深く理解する • 段階的にリリースする
段階的にリリースする 51 • パフォーマンス劣化やバグを多層でテスト 1. テスト環境での負荷試験 2. 他サービスでのリリース 3. 本番環境でのカナリアリリース
テスト環境での負荷試験 52 • Unicorn vs Phusion Passenger、通常時 vs ホットデプロイ時 •
「負荷試験コトハジメ」(https://bit.ly/35Xtncb) ◦ インクリメンタルに負荷試験を行う ▪ フェーズ1: 単一クライアント、単一API ▪ フェーズ2: 複数クライアント、単一API ▪ フェーズ3: 複数クライアント、シナリオベース • 完璧にやろうとしすぎない、次ステージ以降でカバー ホットデプロイ時
他サービスでの先行リリース 53 • 規模の小さいサービスで先行リリース ◦ 運用を通じた各種パラメーター、モニタリング等の調整 ◦ 複数回リリースの経験
本番環境でのカナリアリリース 54 • 本番リクエストを2%程度 • Nginxログからレスポンスタイムを集計 Uncorn 98% 2%
55 振り返り ・ まとめ 04 Section
Unicornへ移行した結果 56 移行 分
移行して正直どうだったか? 57 • 25分 -> 2、3分へ短縮できる効果は大きい ◦ デプロイ数の増加、ロールバックの安心感 •
一部本番へ流出した問題があった ◦ Redis connection、Releasesの消失 ◦ 時間 x 規模が必要な事象は発見しづらい ▪ リプレイテストの仕組みなど • Capistranoの辛さを感じる日々 ◦ サーバーの状態変化に起因した問題を引くことが多い
まとめ 58 • モノリスへのアプローチ ◦ プランBを確保する ◦ 変更対象 (ライブラリ等) を深く理解する
◦ 段階的にリリースする • 今後 ◦ モノリスがEKSへ移行中 ◦ モノリスの分割が進行中 ◦ 自動カナリアリリースを準備中
スモールビジネスを、 世界の主役に。