$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Digital Future Design
Search
Fumiya Akasaka
October 29, 2023
Research
0
110
Digital Future Design
Presented at ServDes.2023, Rio de Janeiro, Brazil (July 12th, 2023)
Fumiya Akasaka
October 29, 2023
Tweet
Share
More Decks by Fumiya Akasaka
See All by Fumiya Akasaka
Values of LLs in RDI
fumiyaakasaka
0
37
Platform-level Living Lab Canvas
fumiyaakasaka
0
210
Consciously drifting
fumiyaakasaka
0
240
共創のための地域基盤としての非公式組織の形成 / Informal community as an infrastructure for co-creation
fumiyaakasaka
2
800
Infrastructuringsocial labs
fumiyaakasaka
0
150
超高齢社会における未来の暮らしとそれを支えるテクノロジーのデザイン / Designing future lives and supportive digital technologies in a super-aging society
fumiyaakasaka
0
200
OLLD2023参加報告会 / OLLD2023 Reporting Event
fumiyaakasaka
0
160
Other Decks in Research
See All in Research
ACL読み会2025: Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
100
視覚から身体性を持つAIへ: 巧緻な動作の3次元理解
tkhkaeio
0
120
ロボット学習における大規模検索技術の展開と応用
denkiwakame
1
180
スキマバイトサービスにおける現場起点でのデザインアプローチ
yoshioshingyouji
0
270
音声感情認識技術の進展と展望
nagase
0
410
Tiaccoon: Unified Access Control with Multiple Transports in Container Networks
hiroyaonoe
0
190
"主観で終わらせない"定性データ活用 ― プロダクトディスカバリーを加速させるインサイトマネジメント / Utilizing qualitative data that "doesn't end with subjectivity" - Insight management that accelerates product discovery
kaminashi
15
17k
Earth AI: Unlocking Geospatial Insights with Foundation Models and Cross-Modal Reasoning
satai
2
190
LLM-Assisted Semantic Guidance for Sparsely Annotated Remote Sensing Object Detection
satai
3
200
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
生成的情報検索時代におけるAI利用と認知バイアス
trycycle
PRO
0
110
教師あり学習と強化学習で作る 最強の数学特化LLM
analokmaus
2
770
Featured
See All Featured
Exploring the relationship between traditional SERPs and Gen AI search
raygrieselhuber
PRO
2
3.4k
The Spectacular Lies of Maps
axbom
PRO
1
400
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
More Than Pixels: Becoming A User Experience Designer
marktimemedia
2
260
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Balancing Empowerment & Direction
lara
5
820
Redefining SEO in the New Era of Traffic Generation
szymonslowik
1
170
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
170
Mozcon NYC 2025: Stop Losing SEO Traffic
samtorres
0
90
Product Roadmaps are Hard
iamctodd
PRO
55
12k
Money Talks: Using Revenue to Get Sh*t Done
nikkihalliwell
0
120
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
Transcript
Digital Future Design: Designing Digital Service Systems based on Future
Visions Fumiya Akasaka, National Institute of Advanced Industrial Science and Technology (AIST), Japan,
[email protected]
Yuya Mitake, The University of Tokyo, Japan,
[email protected]
Kentaro Watanabe, AIST, Japan,
[email protected]
1 Yuri Nishikawa, AIST, Japan,
[email protected]
Jun Ozawa, AIST, Japan,
[email protected]
ServDes2023 | 11th-14th, July, 2023. Rio de Janeiro, Brazil Background
• Focus on “social innovation” (e.g., Manzini 14; Mulgan+ 07) ◦ Design for social innovation is required to achieve the sustainable society • “Digital tech” in service systems (e.g., Pekkala&Spohrer 19) ◦ Integrating advanced digital technologies with services is becoming important to increase the value and competitiveness ◦ Digital service also provide opportunities to address complex social issues • Smart city ◦ It originally aimed to overcome (urban) social issues using digital tech and services ◦ However, there are many criticisms on its technocentric approach that lacks a human-centered and social perspectives (Andreani+ 19) © 2023 AIST 2
ServDes2023 | 11th-14th, July, 2023. Rio de Janeiro, Brazil SD
focusing on “social” & “digital” aspects • Design for social transformation ◦ Transition Design (Irwin 18): design approach to achieve social transformation toward a desirable future. Stakeholders are involved in future visioning and the long-term interventions ◦ Transformative SD (Sangiorgi 11), SD for social innovation (Yang&Sung 16): a participatory action research to implement the transformative interventions for achieving social change • Service System + Digital tech ◦ New system concepts: Smart service system (Lim&Maglio 18), Smart PSS (Valencia+ 15), Digital service system (Watanabe+ 20) ◦ Design methods: Developed mainly in Sys. Eng. and PSS research arena (e.g., Halstenberg+ 19; Li&Lu 21; Tsunetomo+ 22) Research gap: These two approaches, design for social transformation and DSS design, have been dealt with separately and rarely intersected, although they are key to social innovation © 2023 AIST 3
ServDes2023 | 11th-14th, July, 2023. Rio de Janeiro, Brazil Objective
and research approach • Approach: Design Research Methodology (Blessing&Chakrabarti 09) 1. Develop a design method: “Digital Future Design Method” to support the creation of the DSSs for realizing the social transformation to a desirable future vision 2. Apply the method to a design practice: the design of next-generation smart mobility services in the Kashiwa-no-ha Smart City in Japan 3. Reflect the application results: discussion on the usefulness and limitation of the proposed method based on the application results © 2023 AIST 4 Objective of this study is… To develop a new design method that integrates the social transformation approach with the DSS design approach
ServDes2023 | 11th-14th, July, 2023. Rio de Janeiro, Brazil Digital
Future Design Method (DFDM) © 2023 AIST 5 Designed from the comprehensive perspectives of the socio cyber-physical- system (Rijswijk+ 21) <Core principle> DFDM begins with visioning the desirable future society, and then embodies the DSS concepts. Digital Social Physical Collaborative Design Design Models Refer Support Designed with collaborative approach supported by several design models
ServDes2023 | 11th-14th, July, 2023. Rio de Janeiro, Brazil Proposed
design process and models © 2023 AIST 6 Detailed design, Prototyping, Experiments, etc. Step1: Multi-perspective context analysis Collaborative Model-based Step2: Future visioning Collaborative Model-based Step3: Vision-based concept design Collaborative Model-based Digital Future Hexagon for the analysis of Socio-CPS context Future Life Snapshots for ideating ang analyzing possible future life scenes Vision-Life- Function Model to structure the relations between vision, life scenes, and DSS functions
ServDes2023 | 11th-14th, July, 2023. Rio de Janeiro, Brazil Application
case • A project to design next-generation smart mobility services (MaaS) in the Kashiwa-no- ha Smart City (incl. Level-4 automated buses, various personal mobility vehicles, etc) • How to design future mobility services in relation to various components such as user values, urban resources, vision, and other domain services ? © 2023 AIST 7 Restaur ant Shopping center Street Mobility data City vision Mobility vehicles Automated bus Personal mobility vehicle Kashiwa-no-ha smart city Users
ServDes2023 | 11th-14th, July, 2023. Rio de Janeiro, Brazil Social
Physi cal Digi tal Step1: Multi-perspective Context Analysis • DFDM begins with Digital Future Hexagon, a multi-perspective context analysis based on the socio- CPS domains: (social, physical and digital) before future visioning and DSS concept generation © 2023 AIST 8 Life with various shared mobilities to allow comfortable transportation without private cars Walkable city Comfortable city life without a private cars Shopping/resta urant services Shopping center Personal mobility vehicles Eco-friendly transportation Mobility reservation Mobility management system Personal mobility availability Personal mobility occupancy data
ServDes2023 | 11th-14th, July, 2023. Rio de Janeiro, Brazil Step2:
Future visioning © 2023 AIST 9 • Images of desirable future society (future life snapshot) are envisioned based on the hexagon; then, the snapshots are summarized to created a future vision. Ideating the future life snapshots Integrating to create a future vision 1 2
ServDes2023 | 11th-14th, July, 2023. Rio de Janeiro, Brazil Step3:
Vision-based concept design © 2023 AIST 10 • Designers explore and describe DSS concept (as a set of key functions) Vision Life DSS Functions Abstract Concrete Zig-zag thinking
ServDes2023 | 11th-14th, July, 2023. Rio de Janeiro, Brazil Findings
• Usefulness ◦ DFDM is useful for the integrated design of two systems that have different levels of abstraction: future vision and DSSs ◦ The hexagon’s six perspectives provide “constraints” and “clues” in DSS idea generation -> effective in supporting creative thinking to explore new opportunities ◦ The design models was useful in supporting co-creation by visualizing and managing the results of workshops and discussions • Limitations ◦ This study only covers the early phases (i.e., the conceptual design) ◦ We need to apply it to other cases for verifying general usefulness © 2023 AIST 11
ServDes2023 | 11th-14th, July, 2023. Rio de Janeiro, Brazil Concluding
summary • We propose the DFDM, a novel design method that supports the designing of DSSs for realizing the social transformation to a desirable future ◦ Design models (Digital future hexagon, VLF diagram) and design processes • The method was applied to a case of smart mobility service design • We found the method is effective in … ◦ Supporting integrated thinking of different levels of abstraction: future vision and DSSs ◦ Providing stimulus (constraints and clues) in DSS idea generation ◦ Supporting co-creation activities by visualizing and managing the results of workshops and discussions • Future works will include … ◦ Development of additional method for designing more detailed DSS architecture ◦ Application to other domain cases © 2023 AIST 12
Thank you !! / Obrigado !! Do not hesitate to
contact me at: 13 fumiya.akasaka [at] aist.go.jp https://www.fumiyaakasaka.com/ https://www.facebook.com/fumiya.akasaka