Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Mongo: Performance and Troubleshooting
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
gamechanger
August 21, 2012
Technology
0
310
Mongo: Performance and Troubleshooting
gamechanger
August 21, 2012
Tweet
Share
More Decks by gamechanger
See All by gamechanger
Concurrency + Mongo
gamechanger
0
110
Mongo and Ops
gamechanger
0
120
Other Decks in Technology
See All in Technology
システムのアラート調査をサポートするAI Agentの紹介/Introduction to an AI Agent for System Alert Investigation
taddy_919
2
1.9k
顧客の言葉を、そのまま信じない勇気
yamatai1212
1
340
OCI Database Management サービス詳細
oracle4engineer
PRO
1
7.3k
コスト削減から「セキュリティと利便性」を担うプラットフォームへ
sansantech
PRO
3
1.3k
AIと新時代を切り拓く。これからのSREとメルカリIBISの挑戦
0gm
0
790
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
6
68k
プロダクト成長を支える開発基盤とスケールに伴う課題
yuu26
4
1.3k
あたらしい上流工程の形。 0日導入からはじめるAI駆動PM
kumaiu
5
760
Claude_CodeでSEOを最適化する_AI_Ops_Community_Vol.2__マーケティングx_AIはここまで進化した.pdf
riku_423
2
470
仕様書駆動AI開発の実践: Issue→Skill→PRテンプレで 再現性を作る
knishioka
2
600
Meshy Proプラン課金した
henjin0
0
250
Amazon S3 Vectorsを使って資格勉強用AIエージェントを構築してみた
usanchuu
3
440
Featured
See All Featured
Building an army of robots
kneath
306
46k
Heart Work Chapter 1 - Part 1
lfama
PRO
5
35k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
State of Search Keynote: SEO is Dead Long Live SEO
ryanjones
0
110
Crafting Experiences
bethany
1
46
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
PRO
1
1.1k
Noah Learner - AI + Me: how we built a GSC Bulk Export data pipeline
techseoconnect
PRO
0
100
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.6k
Technical Leadership for Architectural Decision Making
baasie
1
240
How to make the Groovebox
asonas
2
1.9k
The Impact of AI in SEO - AI Overviews June 2024 Edition
aleyda
5
730
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
133
19k
Transcript
Performance & Troubleshooting @kirilnyc @gcsports
• How MongoDB works (layman's version) • Common failure cases
• Best practices
Fundamentals • OS Pager, LRU cache ejection • Working Set
and implications • Documents on disk
Virtual Memory LRU
Working Set
Documents on Disk
Failing • Underestimating Working Set • Ill-Fitting Use Cases •
Schema Design Mistakes
Oops, Overload
Estimating Working Set • Indexes • Core operational data (user
records, etc) • Secondary records (logs, sessions) • Long tail data (historical, related) • Scans*
I Know, Let's use Mongo!
Sub-optimal Use Cases • Session storage • Big fragmented collections
• Giant working sets + performance demands • Clearly tabular data
Simulated Joins!!!
Let's NoSQL! • Look for the largest granularity that works
• Eschew lookup collections • Prefer containment over reference • Query sparingly
Best Practices • Denormalize heavily • Do Capacity Planning •
Live in your slow query logs • Watch the numbers
Documents No thanks. Yes please.
Capacity Planning
Logs *yawn* Ruh-roh...
Numbers • Query load (subjective, learn yours) • Lock percentage
(< 50%) • Queues (single digits) • Page faults (single digits)
@kirilnyc CTO, GameChanger Media http://GC.io/about