Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Mongo: Performance and Troubleshooting
Search
gamechanger
August 21, 2012
Technology
0
310
Mongo: Performance and Troubleshooting
gamechanger
August 21, 2012
Tweet
Share
More Decks by gamechanger
See All by gamechanger
Concurrency + Mongo
gamechanger
0
110
Mongo and Ops
gamechanger
0
110
Other Decks in Technology
See All in Technology
20250912_RPALT_データを集める→とっ散らかる問題_Obsidian紹介
ratsbane666
0
100
まずはマネコンでちゃちゃっと作ってから、それをCDKにしてみよか。
yamada_r
2
120
エンジニアリングマネージャーの成長の道筋とキャリア / Developers Summit 2025 KANSAI
daiksy
3
1.2k
AIの最新技術&テーマをつまんで紹介&フリートークするシリーズ:はじめてのローカルLLM
stanaka26
0
110
共有と分離 - Compose Multiplatform "本番導入" の設計指針
error96num
2
1.2k
品質視点から考える組織デザイン/Organizational Design from Quality
mii3king
0
220
エンジニアが主導できる組織づくり ー 製品と事業を進化させる体制へのシフト
ueokande
1
120
AIエージェント開発用SDKとローカルLLMをLINE Botと組み合わせてみた / LINEを使ったLT大会 #14
you
PRO
0
130
20250905_MeetUp_Ito-san_s_presentation.pdf
magicpod
1
100
Django's GeneratedField by example - DjangoCon US 2025
pauloxnet
0
160
TS-S205_昨年対比2倍以上の機能追加を実現するデータ基盤プロジェクトでのAI活用について
kaz3284
1
230
S3アクセス制御の設計ポイント
tommy0124
3
210
Featured
See All Featured
GitHub's CSS Performance
jonrohan
1032
460k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
53k
The Invisible Side of Design
smashingmag
301
51k
Building an army of robots
kneath
306
46k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Raft: Consensus for Rubyists
vanstee
140
7.1k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
930
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
YesSQL, Process and Tooling at Scale
rocio
173
14k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
GraphQLの誤解/rethinking-graphql
sonatard
72
11k
Transcript
Performance & Troubleshooting @kirilnyc @gcsports
• How MongoDB works (layman's version) • Common failure cases
• Best practices
Fundamentals • OS Pager, LRU cache ejection • Working Set
and implications • Documents on disk
Virtual Memory LRU
Working Set
Documents on Disk
Failing • Underestimating Working Set • Ill-Fitting Use Cases •
Schema Design Mistakes
Oops, Overload
Estimating Working Set • Indexes • Core operational data (user
records, etc) • Secondary records (logs, sessions) • Long tail data (historical, related) • Scans*
I Know, Let's use Mongo!
Sub-optimal Use Cases • Session storage • Big fragmented collections
• Giant working sets + performance demands • Clearly tabular data
Simulated Joins!!!
Let's NoSQL! • Look for the largest granularity that works
• Eschew lookup collections • Prefer containment over reference • Query sparingly
Best Practices • Denormalize heavily • Do Capacity Planning •
Live in your slow query logs • Watch the numbers
Documents No thanks. Yes please.
Capacity Planning
Logs *yawn* Ruh-roh...
Numbers • Query load (subjective, learn yours) • Lock percentage
(< 50%) • Queues (single digits) • Page faults (single digits)
@kirilnyc CTO, GameChanger Media http://GC.io/about