Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Mongo: Performance and Troubleshooting
Search
gamechanger
August 21, 2012
Technology
0
310
Mongo: Performance and Troubleshooting
gamechanger
August 21, 2012
Tweet
Share
More Decks by gamechanger
See All by gamechanger
Concurrency + Mongo
gamechanger
0
110
Mongo and Ops
gamechanger
0
120
Other Decks in Technology
See All in Technology
広告の効果検証を題材にした因果推論の精度検証について
zozotech
PRO
0
120
セキュリティについて学ぶ会 / 2026 01 25 Takamatsu WordPress Meetup
rocketmartue
1
290
GCASアップデート(202510-202601)
techniczna
0
250
Contract One Engineering Unit 紹介資料
sansan33
PRO
0
13k
GitLab Duo Agent Platform × AGENTS.md で実現するSpec-Driven Development / GitLab Duo Agent Platform × AGENTS.md
n11sh1
0
120
クレジットカード決済基盤を支えるSRE - 厳格な監査とSRE運用の両立 (SRE Kaigi 2026)
capytan
6
2.6k
Kiro IDEのドキュメントを全部読んだので地味だけどちょっと嬉しい機能を紹介する
khmoryz
0
160
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
6
67k
M&A 後の統合をどう進めるか ─ ナレッジワーク × Poetics が実践した組織とシステムの融合
kworkdev
PRO
1
400
GitHub Issue Templates + Coding Agentで簡単みんなでIaC/Easy IaC for Everyone with GitHub Issue Templates + Coding Agent
aeonpeople
1
180
変化するコーディングエージェントとの現実的な付き合い方 〜Cursor安定択説と、ツールに依存しない「資産」〜
empitsu
4
1.3k
Context Engineeringが企業で不可欠になる理由
hirosatogamo
PRO
3
410
Featured
See All Featured
How GitHub (no longer) Works
holman
316
140k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
1k
GitHub's CSS Performance
jonrohan
1032
470k
Code Reviewing Like a Champion
maltzj
527
40k
Balancing Empowerment & Direction
lara
5
880
Tell your own story through comics
letsgokoyo
1
800
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
190
The AI Revolution Will Not Be Monopolized: How open-source beats economies of scale, even for LLMs
inesmontani
PRO
3
3k
Principles of Awesome APIs and How to Build Them.
keavy
128
17k
YesSQL, Process and Tooling at Scale
rocio
174
15k
We Analyzed 250 Million AI Search Results: Here's What I Found
joshbly
1
670
Transcript
Performance & Troubleshooting @kirilnyc @gcsports
• How MongoDB works (layman's version) • Common failure cases
• Best practices
Fundamentals • OS Pager, LRU cache ejection • Working Set
and implications • Documents on disk
Virtual Memory LRU
Working Set
Documents on Disk
Failing • Underestimating Working Set • Ill-Fitting Use Cases •
Schema Design Mistakes
Oops, Overload
Estimating Working Set • Indexes • Core operational data (user
records, etc) • Secondary records (logs, sessions) • Long tail data (historical, related) • Scans*
I Know, Let's use Mongo!
Sub-optimal Use Cases • Session storage • Big fragmented collections
• Giant working sets + performance demands • Clearly tabular data
Simulated Joins!!!
Let's NoSQL! • Look for the largest granularity that works
• Eschew lookup collections • Prefer containment over reference • Query sparingly
Best Practices • Denormalize heavily • Do Capacity Planning •
Live in your slow query logs • Watch the numbers
Documents No thanks. Yes please.
Capacity Planning
Logs *yawn* Ruh-roh...
Numbers • Query load (subjective, learn yours) • Lock percentage
(< 50%) • Queues (single digits) • Page faults (single digits)
@kirilnyc CTO, GameChanger Media http://GC.io/about