Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Mongo: Performance and Troubleshooting
Search
gamechanger
August 21, 2012
Technology
0
290
Mongo: Performance and Troubleshooting
gamechanger
August 21, 2012
Tweet
Share
More Decks by gamechanger
See All by gamechanger
Concurrency + Mongo
gamechanger
0
110
Mongo and Ops
gamechanger
0
110
Other Decks in Technology
See All in Technology
サイバー攻撃を想定したセキュリティガイドライン 策定とASM及びCNAPPの活用方法
syoshie
3
1.2k
LINEヤフーのフロントエンド組織・体制の紹介【24年12月】
lycorp_recruit_jp
0
530
あの日俺達が夢見たサーバレスアーキテクチャ/the-serverless-architecture-we-dreamed-of
tomoki10
0
450
alecthomas/kong はいいぞ / kamakura.go#7
fujiwara3
1
300
.NET 9 のパフォーマンス改善
nenonaninu
0
890
AI時代のデータセンターネットワーク
lycorptech_jp
PRO
1
280
バクラクのドキュメント解析技術と実データにおける課題 / layerx-ccc-winter-2024
shimacos
2
1.1k
re:Invent をおうちで楽しんでみた ~CloudWatch のオブザーバビリティ機能がスゴい!/ Enjoyed AWS re:Invent from Home and CloudWatch Observability Feature is Amazing!
yuj1osm
0
120
DevOps視点でAWS re:invent2024の新サービス・アプデを振り返ってみた
oshanqq
0
180
生成AIのガバナンスの全体像と現実解
fnifni
1
190
第3回Snowflake女子会_LT登壇資料(合成データ)_Taro_CCCMK
tarotaro0129
0
190
社内イベント管理システムを1週間でAKSからACAに移行した話し
shingo_kawahara
0
180
Featured
See All Featured
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
2
290
YesSQL, Process and Tooling at Scale
rocio
169
14k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
6.9k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
32
2.7k
GitHub's CSS Performance
jonrohan
1030
460k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
Why Our Code Smells
bkeepers
PRO
335
57k
Into the Great Unknown - MozCon
thekraken
33
1.5k
Keith and Marios Guide to Fast Websites
keithpitt
410
22k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.2k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
5
450
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Transcript
Performance & Troubleshooting @kirilnyc @gcsports
• How MongoDB works (layman's version) • Common failure cases
• Best practices
Fundamentals • OS Pager, LRU cache ejection • Working Set
and implications • Documents on disk
Virtual Memory LRU
Working Set
Documents on Disk
Failing • Underestimating Working Set • Ill-Fitting Use Cases •
Schema Design Mistakes
Oops, Overload
Estimating Working Set • Indexes • Core operational data (user
records, etc) • Secondary records (logs, sessions) • Long tail data (historical, related) • Scans*
I Know, Let's use Mongo!
Sub-optimal Use Cases • Session storage • Big fragmented collections
• Giant working sets + performance demands • Clearly tabular data
Simulated Joins!!!
Let's NoSQL! • Look for the largest granularity that works
• Eschew lookup collections • Prefer containment over reference • Query sparingly
Best Practices • Denormalize heavily • Do Capacity Planning •
Live in your slow query logs • Watch the numbers
Documents No thanks. Yes please.
Capacity Planning
Logs *yawn* Ruh-roh...
Numbers • Query load (subjective, learn yours) • Lock percentage
(< 50%) • Queues (single digits) • Page faults (single digits)
@kirilnyc CTO, GameChanger Media http://GC.io/about