Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Mongo: Performance and Troubleshooting
Search
gamechanger
August 21, 2012
Technology
0
310
Mongo: Performance and Troubleshooting
gamechanger
August 21, 2012
Tweet
Share
More Decks by gamechanger
See All by gamechanger
Concurrency + Mongo
gamechanger
0
110
Mongo and Ops
gamechanger
0
120
Other Decks in Technology
See All in Technology
[続・営業向け 誰でも話せるOCI セールストーク] AWSよりOCIの優位性が分からない編(2025年11月21日開催)
oracle4engineer
PRO
1
130
2025 DORA Reportから読み解く!AIが映し出す、成果を出し続ける組織の共通点 #開発生産性_findy
takabow
0
450
雲勉LT_Amazon Bedrock AgentCoreを知りAIエージェントに入門しよう!
ymae
2
220
Digitization部 紹介資料
sansan33
PRO
1
6k
AI エージェント活用のベストプラクティスと今後の課題
asei
2
380
信頼性が求められる業務のAIAgentのアーキテクチャ設計の勘所と課題
miyatakoji
0
180
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
5
45k
入社したばかりでもできる、 アクセシビリティ改善の第一歩
unachang113
2
360
国産クラウドを支える設計とチームの変遷 “技術・組織・ミッション”
kazeburo
5
9.6k
Data Hubグループ 紹介資料
sansan33
PRO
0
2.3k
個人から巡るAI疲れと組織としてできること - AI疲れをふっとばせ。エンジニアのAI疲れ治療法 ショートセッション -
kikuchikakeru
5
1.9k
重厚長大企業で、顧客価値をスケールさせるためのプロダクトづくりとプロダクト開発チームづくりの裏側 / Developers X Summit 2025
mongolyy
0
200
Featured
See All Featured
The Pragmatic Product Professional
lauravandoore
36
7k
Why Our Code Smells
bkeepers
PRO
340
57k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
RailsConf 2023
tenderlove
30
1.3k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
2.9k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.2k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
The Language of Interfaces
destraynor
162
25k
Designing Experiences People Love
moore
142
24k
Side Projects
sachag
455
43k
Code Review Best Practice
trishagee
72
19k
Transcript
Performance & Troubleshooting @kirilnyc @gcsports
• How MongoDB works (layman's version) • Common failure cases
• Best practices
Fundamentals • OS Pager, LRU cache ejection • Working Set
and implications • Documents on disk
Virtual Memory LRU
Working Set
Documents on Disk
Failing • Underestimating Working Set • Ill-Fitting Use Cases •
Schema Design Mistakes
Oops, Overload
Estimating Working Set • Indexes • Core operational data (user
records, etc) • Secondary records (logs, sessions) • Long tail data (historical, related) • Scans*
I Know, Let's use Mongo!
Sub-optimal Use Cases • Session storage • Big fragmented collections
• Giant working sets + performance demands • Clearly tabular data
Simulated Joins!!!
Let's NoSQL! • Look for the largest granularity that works
• Eschew lookup collections • Prefer containment over reference • Query sparingly
Best Practices • Denormalize heavily • Do Capacity Planning •
Live in your slow query logs • Watch the numbers
Documents No thanks. Yes please.
Capacity Planning
Logs *yawn* Ruh-roh...
Numbers • Query load (subjective, learn yours) • Lock percentage
(< 50%) • Queues (single digits) • Page faults (single digits)
@kirilnyc CTO, GameChanger Media http://GC.io/about