Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Mongo: Performance and Troubleshooting
Search
gamechanger
August 21, 2012
Technology
0
280
Mongo: Performance and Troubleshooting
gamechanger
August 21, 2012
Tweet
Share
More Decks by gamechanger
See All by gamechanger
Concurrency + Mongo
gamechanger
0
110
Mongo and Ops
gamechanger
0
110
Other Decks in Technology
See All in Technology
【Startup CTO of the Year 2024 / Audience Award】アセンド取締役CTO 丹羽健
niwatakeru
0
990
【若手エンジニア応援LT会】ソフトウェアを学んできた私がインフラエンジニアを目指した理由
kazushi_ohata
0
150
dev 補講: プロダクトセキュリティ / Product security overview
wa6sn
1
2.3k
Introduction to Works of ML Engineer in LY Corporation
lycorp_recruit_jp
0
110
Exadata Database Service on Dedicated Infrastructure(ExaDB-D) UI スクリーン・キャプチャ集
oracle4engineer
PRO
2
3.2k
Amplify Gen2 Deep Dive / バックエンドの型をいかにしてフロントエンドへ伝えるか #TSKaigi #TSKaigiKansai #AWSAmplifyJP
tacck
PRO
0
380
マルチモーダル / AI Agent / LLMOps 3つの技術トレンドで理解するLLMの今後の展望
hirosatogamo
37
12k
Lambdaと地方とコミュニティ
miu_crescent
2
370
Terraform未経験の御様に対してどの ように導⼊を進めていったか
tkikuchi
2
430
Incident Response Practices: Waroom's Features and Future Challenges
rrreeeyyy
0
160
20241120_JAWS_東京_ランチタイムLT#17_AWS認定全冠の先へ
tsumita
2
250
マルチプロダクトな開発組織で 「開発生産性」に向き合うために試みたこと / Improving Multi-Product Dev Productivity
sugamasao
1
300
Featured
See All Featured
Statistics for Hackers
jakevdp
796
220k
Thoughts on Productivity
jonyablonski
67
4.3k
How STYLIGHT went responsive
nonsquared
95
5.2k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
26
1.4k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
232
17k
Imperfection Machines: The Place of Print at Facebook
scottboms
265
13k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
16
2.1k
jQuery: Nuts, Bolts and Bling
dougneiner
61
7.5k
Why You Should Never Use an ORM
jnunemaker
PRO
54
9.1k
Typedesign – Prime Four
hannesfritz
40
2.4k
The Art of Programming - Codeland 2020
erikaheidi
52
13k
Rails Girls Zürich Keynote
gr2m
94
13k
Transcript
Performance & Troubleshooting @kirilnyc @gcsports
• How MongoDB works (layman's version) • Common failure cases
• Best practices
Fundamentals • OS Pager, LRU cache ejection • Working Set
and implications • Documents on disk
Virtual Memory LRU
Working Set
Documents on Disk
Failing • Underestimating Working Set • Ill-Fitting Use Cases •
Schema Design Mistakes
Oops, Overload
Estimating Working Set • Indexes • Core operational data (user
records, etc) • Secondary records (logs, sessions) • Long tail data (historical, related) • Scans*
I Know, Let's use Mongo!
Sub-optimal Use Cases • Session storage • Big fragmented collections
• Giant working sets + performance demands • Clearly tabular data
Simulated Joins!!!
Let's NoSQL! • Look for the largest granularity that works
• Eschew lookup collections • Prefer containment over reference • Query sparingly
Best Practices • Denormalize heavily • Do Capacity Planning •
Live in your slow query logs • Watch the numbers
Documents No thanks. Yes please.
Capacity Planning
Logs *yawn* Ruh-roh...
Numbers • Query load (subjective, learn yours) • Lock percentage
(< 50%) • Queues (single digits) • Page faults (single digits)
@kirilnyc CTO, GameChanger Media http://GC.io/about