Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Mongo: Performance and Troubleshooting
Search
gamechanger
August 21, 2012
Technology
0
300
Mongo: Performance and Troubleshooting
gamechanger
August 21, 2012
Tweet
Share
More Decks by gamechanger
See All by gamechanger
Concurrency + Mongo
gamechanger
0
110
Mongo and Ops
gamechanger
0
110
Other Decks in Technology
See All in Technology
バクラクの認証基盤の成長と現在地 / bakuraku-authn-platform
convto
1
600
Making a MIDI controller device with PicoRuby/R2P2 (RubyKaigi 2025 LT)
risgk
1
200
3月のAWSアップデートを5分間でざっくりと!
kubomasataka
0
120
DuckDB MCPサーバーを使ってAWSコストを分析させてみた / AWS cost analysis with DuckDB MCP server
masahirokawahara
0
1.3k
LiteXとオレオレCPUで作る自作SoC奮闘記
msyksphinz
0
650
DETR手法の変遷と最新動向(CVPR2025)
tenten0727
2
1.4k
AIと開発者の共創: エージェント時代におけるAIフレンドリーなDevOpsの実践
bicstone
1
310
バックオフィス向け toB SaaS バクラクにおけるレコメンド技術活用 / recommender-systems-in-layerx-bakuraku
yuya4
6
540
技術者はかっこいいものだ!!~キルラキルから学んだエンジニアの生き方~
masakiokuda
2
270
クォータ監視、AWS Organizations環境でも楽勝です✌️
iwamot
PRO
1
310
新卒エンジニアがCICDをモダナイズしてみた話
akashi_sn
2
240
Would you THINK such a demonstration interesting ?
shumpei3
1
220
Featured
See All Featured
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Become a Pro
speakerdeck
PRO
27
5.3k
The Language of Interfaces
destraynor
157
25k
The Cult of Friendly URLs
andyhume
78
6.3k
The World Runs on Bad Software
bkeepers
PRO
67
11k
Statistics for Hackers
jakevdp
798
220k
The Art of Programming - Codeland 2020
erikaheidi
53
13k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.2k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.6k
Unsuck your backbone
ammeep
670
57k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
119
51k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
Transcript
Performance & Troubleshooting @kirilnyc @gcsports
• How MongoDB works (layman's version) • Common failure cases
• Best practices
Fundamentals • OS Pager, LRU cache ejection • Working Set
and implications • Documents on disk
Virtual Memory LRU
Working Set
Documents on Disk
Failing • Underestimating Working Set • Ill-Fitting Use Cases •
Schema Design Mistakes
Oops, Overload
Estimating Working Set • Indexes • Core operational data (user
records, etc) • Secondary records (logs, sessions) • Long tail data (historical, related) • Scans*
I Know, Let's use Mongo!
Sub-optimal Use Cases • Session storage • Big fragmented collections
• Giant working sets + performance demands • Clearly tabular data
Simulated Joins!!!
Let's NoSQL! • Look for the largest granularity that works
• Eschew lookup collections • Prefer containment over reference • Query sparingly
Best Practices • Denormalize heavily • Do Capacity Planning •
Live in your slow query logs • Watch the numbers
Documents No thanks. Yes please.
Capacity Planning
Logs *yawn* Ruh-roh...
Numbers • Query load (subjective, learn yours) • Lock percentage
(< 50%) • Queues (single digits) • Page faults (single digits)
@kirilnyc CTO, GameChanger Media http://GC.io/about