Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Mongo: Performance and Troubleshooting
Search
gamechanger
August 21, 2012
Technology
0
310
Mongo: Performance and Troubleshooting
gamechanger
August 21, 2012
Tweet
Share
More Decks by gamechanger
See All by gamechanger
Concurrency + Mongo
gamechanger
0
110
Mongo and Ops
gamechanger
0
120
Other Decks in Technology
See All in Technology
Agent Skillsがハーネスの垣根を超える日
gotalab555
6
4.7k
「もしもデータ基盤開発で『強くてニューゲーム』ができたなら今の僕はどんなデータ基盤を作っただろう」
aeonpeople
0
260
"人"が頑張るAI駆動開発
yokomachi
1
650
小さく、早く、可能性を多産する。生成AIプロジェクト / prAIrie-dog
visional_engineering_and_design
0
140
アプリにAIを正しく組み込むための アーキテクチャ── 国産LLMの現実と実践
kohju
0
250
MariaDB Connector/C のcaching_sha2_passwordプラグインの仕様について
boro1234
0
1.1k
Building Serverless AI Memory with Mastra × AWS
vvatanabe
1
740
AR Guitar: Expanding Guitar Performance from a Live House to Urban Space
ekito_station
0
270
Bedrock AgentCore Evaluationsで学ぶLLM as a judge入門
shichijoyuhi
2
290
オープンソースKeycloakのMCP認可サーバの仕様の対応状況 / 20251219 OpenID BizDay #18 LT Keycloak
oidfj
0
230
Redshift認可、アップデートでどう変わった?
handy
1
110
[2025-12-12]あの日僕が見た胡蝶の夢 〜人の夢は終わらねェ AIによるパフォーマンスチューニングのすゝめ〜
tosite
0
210
Featured
See All Featured
First, design no harm
axbom
PRO
1
1.1k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
720
Amusing Abliteration
ianozsvald
0
76
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
Un-Boring Meetings
codingconduct
0
170
Speed Design
sergeychernyshev
33
1.4k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
32
Build your cross-platform service in a week with App Engine
jlugia
234
18k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
410
Transcript
Performance & Troubleshooting @kirilnyc @gcsports
• How MongoDB works (layman's version) • Common failure cases
• Best practices
Fundamentals • OS Pager, LRU cache ejection • Working Set
and implications • Documents on disk
Virtual Memory LRU
Working Set
Documents on Disk
Failing • Underestimating Working Set • Ill-Fitting Use Cases •
Schema Design Mistakes
Oops, Overload
Estimating Working Set • Indexes • Core operational data (user
records, etc) • Secondary records (logs, sessions) • Long tail data (historical, related) • Scans*
I Know, Let's use Mongo!
Sub-optimal Use Cases • Session storage • Big fragmented collections
• Giant working sets + performance demands • Clearly tabular data
Simulated Joins!!!
Let's NoSQL! • Look for the largest granularity that works
• Eschew lookup collections • Prefer containment over reference • Query sparingly
Best Practices • Denormalize heavily • Do Capacity Planning •
Live in your slow query logs • Watch the numbers
Documents No thanks. Yes please.
Capacity Planning
Logs *yawn* Ruh-roh...
Numbers • Query load (subjective, learn yours) • Lock percentage
(< 50%) • Queues (single digits) • Page faults (single digits)
@kirilnyc CTO, GameChanger Media http://GC.io/about