Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Mongo: Performance and Troubleshooting
Search
gamechanger
August 21, 2012
Technology
0
310
Mongo: Performance and Troubleshooting
gamechanger
August 21, 2012
Tweet
Share
More Decks by gamechanger
See All by gamechanger
Concurrency + Mongo
gamechanger
0
110
Mongo and Ops
gamechanger
0
110
Other Decks in Technology
See All in Technology
LIXIL基幹システム刷新に立ち向かう技術的アプローチについて
tsukuha
1
380
CDKコード品質UP!ナイスな自作コンストラクタを作るための便利インターフェース
harukasakihara
2
230
How to Quickly Call American Airlines®️ U.S. Customer Care : Full Guide
flyaahelpguide
0
240
Talk to Someone At Delta Airlines™️ USA Contact Numbers
travelcarecenter
0
160
三視点LLMによる複数観点レビュー
mhlyc
0
230
スタックチャン家庭用アシスタントへの道
kanekoh
0
120
モニタリング統一への道のり - 分散モニタリングツール統合のためのオブザーバビリティプロジェクト
niftycorp
PRO
1
520
All About Sansan – for New Global Engineers
sansan33
PRO
1
1.2k
サイバーエージェントグループのSRE10年の歩みとAI時代の生存戦略
shotatsuge
4
1k
CDK Toolkit Libraryにおけるテストの考え方
smt7174
1
550
SRE不在の開発チームが障害対応と 向き合った100日間 / 100 days dealing with issues without SREs
shin1988
2
2k
Deep Security Conference 2025:生成AI時代のセキュリティ監視 /dsc2025-genai-secmon
mizutani
4
2.9k
Featured
See All Featured
YesSQL, Process and Tooling at Scale
rocio
173
14k
Producing Creativity
orderedlist
PRO
346
40k
The Straight Up "How To Draw Better" Workshop
denniskardys
235
140k
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.9k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
990
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
Become a Pro
speakerdeck
PRO
29
5.4k
A designer walks into a library…
pauljervisheath
207
24k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
21
1.3k
Speed Design
sergeychernyshev
32
1k
Transcript
Performance & Troubleshooting @kirilnyc @gcsports
• How MongoDB works (layman's version) • Common failure cases
• Best practices
Fundamentals • OS Pager, LRU cache ejection • Working Set
and implications • Documents on disk
Virtual Memory LRU
Working Set
Documents on Disk
Failing • Underestimating Working Set • Ill-Fitting Use Cases •
Schema Design Mistakes
Oops, Overload
Estimating Working Set • Indexes • Core operational data (user
records, etc) • Secondary records (logs, sessions) • Long tail data (historical, related) • Scans*
I Know, Let's use Mongo!
Sub-optimal Use Cases • Session storage • Big fragmented collections
• Giant working sets + performance demands • Clearly tabular data
Simulated Joins!!!
Let's NoSQL! • Look for the largest granularity that works
• Eschew lookup collections • Prefer containment over reference • Query sparingly
Best Practices • Denormalize heavily • Do Capacity Planning •
Live in your slow query logs • Watch the numbers
Documents No thanks. Yes please.
Capacity Planning
Logs *yawn* Ruh-roh...
Numbers • Query load (subjective, learn yours) • Lock percentage
(< 50%) • Queues (single digits) • Page faults (single digits)
@kirilnyc CTO, GameChanger Media http://GC.io/about