Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The Hundred Machine Learning 7.4-7.7
Search
ganyariya
September 12, 2020
Technology
0
54
The Hundred Machine Learning 7.4-7.7
ganyariya
September 12, 2020
Tweet
Share
More Decks by ganyariya
See All by ganyariya
FastAPI+VercelでZennのバッジをお手軽に作る
ganariya
0
850
ありがとう競技プログラミングこんにちはDocker
ganariya
0
1.6k
輪講 The hundred ML3.3-3.5
ganariya
0
88
Other Decks in Technology
See All in Technology
AWS Well-Architected Frameworkで学ぶAmazon ECSのセキュリティ対策
umekou
2
140
設計を積み重ねてシステムを刷新する
sansantech
PRO
0
160
手を動かしてレベルアップしよう!
maruto
0
210
(機械学習システムでも) SLO から始める信頼性構築 - ゆる SRE#9 2025/02/21
daigo0927
0
270
いまからでも遅くない!コンテナでWebアプリを動かしてみよう!コンテナハンズオン編
nomu
0
150
【詳説】コンテンツ配信 システムの複数機能 基盤への拡張
hatena
0
240
LINE NEWSにおけるバックエンド開発
lycorptech_jp
PRO
0
240
30→150人のエンジニア組織拡大に伴うアジャイル文化を醸成する役割と取り組みの変化
nagata03
0
180
Snowflake ML モデルを dbt データパイプラインに組み込む
estie
0
100
【Findy】「正しく」失敗できる チームの作り方 〜リアルな事例から紐解く失敗を恐れない組織とは〜 / A team that can fail correctly by findy
i35_267
5
880
ディスプレイ広告(Yahoo!広告・LINE広告)におけるバックエンド開発
lycorptech_jp
PRO
0
360
EDRの検知の仕組みと検知回避について
chayakonanaika
12
4.9k
Featured
See All Featured
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
7k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
A designer walks into a library…
pauljervisheath
205
24k
Making Projects Easy
brettharned
116
6k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
10
1.3k
Building Applications with DynamoDB
mza
93
6.2k
Code Review Best Practice
trishagee
67
18k
Six Lessons from altMBA
skipperchong
27
3.6k
Thoughts on Productivity
jonyablonski
69
4.5k
Bootstrapping a Software Product
garrettdimon
PRO
306
110k
Side Projects
sachag
452
42k
Transcript
ྠߨ 5IF.- <r > HBOBSJZB ganariya ganariya2525 ganariya2525 ganariya’s blog
ganariya ganariya
2 / N όΠΞεͱࢄ • όΠΞε • ࢄ 予測値
.VMUJ-BCFM$MBTTJGJDBUJPO
4 / N .VMUJ$MBTTWT.VMUJ-BCFM 多クラス モデル (決定⽊ softmax) ねこ うさぎ
いぬ 多ラベル モデル (決定⽊ binary cross entropy) ミシン ⾞ 警察官 タキシード 複数出⼒
5 / N ଟϥϕϧྨ ֶशΞϧΰϦζϜ • σʔληοτΛʮը૾ϥϕϧʯ͕ҰରҰʹͳΔΑ͏ʹ ૢ࡞ͯ͠ɺ৽͍͠σʔληοτʹ͢Δ • ৽͍͠σʔληοτΛͬͯʮଟΫϥεϞσϧʯΛֶ
श͢Δ ミシン ⾞ 警察官 タキシード
6 / N ଟϥϕϧྨ Ϟσϧͱ༧ଌ • ༻Ͱ͖ΔϞσϧʮଟΫϥεྨʯ • ܾఆ •
ϩδεςΟοΫճؼ • /FVSBM/FUXPSL • ग़ྗΫϥε࣍ݩͷϕΫτϧͰ < >ͷ֬Ͱ͋Δ NN ミシン ⾞ 警察官 タキシード ⽝ sigmoid
7 / N ଟϥϕϧྨ // • //ʹ͓͚Δଟϥϕϧྨ • ֤VOJUͷίετؔCJOBSZDSPTTFOUSPQZ •
∈ 1, … , , ∈ 1, … , ϥϕϧ Ϋϥε ͷ • !,# ൪ͷσʔληοτͷ࣍ݩͷϥϕϧͷ֬ • ֬తޯ߱Լ๏ͱ૬ੑ͕ྑ͍ • ࠷খԽج४ BWH FBDIVOJU
8 / N ଟϥϕϧྨ 'BLF$MBTT • ϥϕϧ͕গͳ͍߹ ֤ଐੑ͕औΓ͏Δͷ ૯߹ͤͰِΫϥεΛ ࡞ͬͯଟྨͰ͖Δ
• ϝϦοτͱͯ͠ʮϥϕϧؒͷ૬ؔʯΛߟ͑ͯྨ͢Δ ͜ͱ͕Ͱ͖Δ • ʮTQBNͦ͏ ༏ઌ͕ߴͦ͏ʯͷϝʔϧͰ͖Δ͚ͩ ൃੜ͠ͳ͍Α͏ʹ͍ͨ͠
&OTFNCMF-FBSOJOH
10 / N Ξϯαϯϒϧֶश UMES • ,BHHMFͷίϯϖͰΑ্͘ҐʹೖΔΞϧΰϦζϜ • ऑֶशثΛෳͬͯΈ߹ΘͤΔ •
൚ԽೳྗΛ্͛Δ アンサンブル Bagging Boosting Random Forest
11 / N Ξϯαϯϒϧͷख๏ • ϒʔεςΟϯά • ΦϦδφϧͷσʔλΛ༻͍ͯऑֶशثΛ࡞Δ • ͦͷޙɺ܁Γฦ͠ʮલϞσϧͷޡࠩΛमਖ਼͢ΔʯΑ͏ʹ
৽͍͠ϞσϧΛߏங͢Δ • όΪϯά • ݩͷσʔλ͔ΒʮίϐʔʯΛϥϯμϜʹ࡞͠ খ͞ͳऑֶशثΛେྔʹ࡞ͬͯҙݟΛΈ߹ΘͤΔ • ༗໊ͳͷ͕ϥϯμϜϑΥϨετ
12 / N WBOJMMBCBHHJOH • ݩͷֶशσʔλ͔ΒϒʔτετϥοϓͰऔΓग़͠ ݸͷܾఆΛߏங͢Δ ೖྗxʹରͯ͠ݸͷग़ྗͷฏۉΛऔΔ 学習全データ !
" # ブートストラップ 重複許してランダムに データを取り出す
13 / N ϥϯμϜϑΥϨετ • ઌఔͷWBOJMMBCBHHJOHʹҰ෦मਖ਼ΛՃ͑ͨϞσϧ • ֤ܾఆͰׂج४ͷಛྔΛϥϯμϜʹݸʹߜΔ ! "
# 元特徴量
14 / N ͳͥಛྔΛߜΔͷʁ • ͳͥͰ͠ΐ͏͔
15 / N ͳͥಛྔΛߜΔͷʁ • ܾఆಉ͕࢜૬͍ؔͯ͠·͏ • ऑֶशثΛෳ࡞Δҙຯ͕ͳ͍ • ͋Δಛྔʹґଘͯ͠͠·͏Մೳੑ͕͋Δ
• ਓؒͷίϛϡχςΟʹ͍͠ • ͋Δࢥʹภͬͨਓ͕ؒू·Δͱ͕ൃੜ͢Δ • ձࣾՄೳͳݶΓʮ͍Ζ͍ΖͳλΠϓʯ͕ू·ͬͨ΄͏͕ ޭ͢ΔͱݴΘΕ͍ͯΔ
16 / N 3'ͷϝϦοτ • ϥϯμϜϑΥϨετΞϯαϯϒϧֶशͰ ࠷͘༻͍ΒΕΔ • ࠷ऴϞσϧͷࢄ͕খ͘͞ͳΔ •
ࢄ͕খ͍͞ͱ͍͏͜ͱʮաֶशʯ͍ͯ͠ͳ͍ • ग़ྗ͕Β͔ͭͳ͍
17 / N (SBEJFOU#PPTUJOH • (SBEJFOU#PPTUJOH ޯϒʔεςΟϯά • ऑֶशثΛ܁Γฦ͠࡞ͯ͠ લϞσϧͷޡࠩΛগͣͭ͠ݮΒ͍ͯ͘͠
• ·ͣճؼʢ࣮༧ଌʣʹ͍ͭͯߟ͑Δ
18 / N (SBEJFOU#PPTUJOH ܾఆ $ 元データ集合 % は個⽬のデータ
19 / N (SBEJFOU#PPTUJOH ܾఆ $ 元データ集合 % は個⽬のデータ 新しいラベル%
% を作る residual(残余誤差)と呼ばれる
20 / N (SBEJFOU#PPTUJOH ܾఆ $ 元データ集合 % は個⽬のデータ !
この時点で新全体モデル が構築できる
21 / N (SBEJFOU#PPTUJOH ܾఆ $ 元データ集合 % は個⽬のデータ !
新たに誤差を作成する $ のみのときより誤差が 減っている
22 / N (SBEJFOU#PPTUJOH ܾఆ $ 元データ集合 % は個⽬のデータ !
"
23 / N (SBEJFOU#PPTUJOH ܾఆ $ 元データ集合 % は個⽬のデータ !
" 誤差を直接修正していく
24 / N ޯϒʔεςΟϯάʁ • ͳͥʮޯϒʔεςΟϯάʯʮޯϒʔεςΟϯ άʯͳͷ͔ʁ • ͜Ε·ͰͷճؼϞσϧͰඍʹΑΓʮޯʯΛٻΊ ͯҠಈ͍ͯͨ͠
• ޯϒʔεςΟϯάͰʮࠩޡࠩʯͰҠಈ͢Δ • ম͖ͳ·͠ͱ͔ 140ͬΆ͍
25 / N (#GPS$MBTTJGJDBUJPO • ྨͰͷޯϒʔεςΟϯά CJOBSZ • ݸͷܾఆ •
ΞϯαϯϒϧֶशʹΑΔ༧ଌ • ֤ܾఆͷ༧ଌΛ߹ܭͯ͠γάϞΠυͰ< >ͷ֬ͱ͢Δ • $ Λ࠷େԽ͢Δ MPH
26 / N ֶशΞϧΰϦζϜ • = & = ' ()'
, = ( * ∑+ + ͱॳظԽ͢Δ • ֤ΠςϨʔγϣϯ ݸͷܾఆߏங • ݸͷσʔλͷޯΛܭࢉ͢Δ • ! Λ༻͍ͯσʔληοτΛߋ৽͢Δ • ৽͍ܾ͠ఆ% Λߏங͢Δ • ߋ৽εςοϓ% Λܭࢉ͢Δ • ݸͷܾఆͱશମϞσϧΛߏங͢Δ
27 / N ϝϦοτ σϝϦοτ • ޯϒʔεςΟϯάਫ਼ͷ໘ͰϥϯμϜϑΥϨετ ʹൺͯलͰ͍ͯΔ • ͨͩ͠ɺஞ࣍ॲཧͳͨΊ܇࿅ॲཧ͕͍
3//ͷ3FWJFX
29 / N 3// • ʮ෦هԱʯΛ࣋ͭ͜ͱͰ࿈ଓσʔλΛॲཧͰ͖Δ • ࠨଆͱӈଆʮಉ͡ʯ ӈଆʮ࣌ܥྻͰ͔Γ͘͢ͳΔΑ͏ʹʯల։͚ͨͩ͠ •
-45.HBUFE3//Ͱԕ͍هԱࢀরͰ͖ΔΑ͏ʹ ͳͬͨ
30 / N ಈ࡞ྫ • 5IJTJTB\\^^ σʔληοτͷ̍σʔλ TJ[F
31 / N ಈ࡞ྫ • 5IJTJTB\\^^
32 / N ಈ࡞ྫ • 5IJTJTB\\^^
33 / N ಈ࡞ྫ • 5IJTJTB\\^^
34 / N #BH0G8PSET • ࣮ࡍ͜ͷʮ5IJTʯͬͯͲ͏ೖ͍ͬͯΔͷʁ • ͦͷ··ೖΒͳ͘ͳ͍ʁ • ϕΫτϧʹม͢Δ
• ྫ͑༗໊ͳ୯ޠ࣍ݩʹݻఆ͢Δ • ࠷ۙࢄදݱ 8PSE7FD
35 / N ಈ࡞ྫ #P8 • 5IJTJTB\\^^
-FBSOJOHUP-BCMF 4FRVFODFT
37 / N 4FRVFODF • 4FRVFODF γʔέϯε ඇৗʹॏཁͳσʔλ • ͠ݴ༿
• Իָ • ϏσΦ • 4FRVFODFMBCFMJOH • γʔέϯεͷʮ֤ཁૉ͝ͱʹ֤ϥϕϧʯΛׂΓͯΔ • ಛϕΫτϧू߹ ϥϕϧϕΫτϧू߹ • ! = [x& ' , … , x! ()!*+!)>ݸͷσʔλϕΫτϧ • ! ಉ༷ʹݸͷσʔλ
38 / N $POEJUPOBM 3BOEPN'JFME • γʔέϯεϥϕϦϯά3//͚ͩͰͳ͘ ͖݅֬ $3' ͱ͍͏Ϟσϧ͋Δ
ಛϕΫτϧ͕ଟ͘ͷใྔΛ͍࣋ͬͯΔͱ͖ʹྑ͍ • ϕΫτϧͷಛྔΛઐՈ͕ઃఆ͢Δ ͍͠ • ʮϩδεςΟοΫճؼʯͷΞϧΰϦζϜΛγʔέϯε ʹҰൠԽͨ͠ͷ • ํHBUFE 3//ΑΓྑ͍ਫ਼Λग़͢͜ͱ͕͋Δ • ͨͩ͠ɺ$3'ͷֶशඇৗʹ͍
4FR4FR-FBSOJOH https://qiita.com/halhorn/items/646d323ac45 7715866d4
40 / N TFRTFR • TFRTFRTFRVFODFMBCFMJOHQSPCMFNͷҰൠԽ +, + ͷ͕͞ՄมʹͰ͖Δ •
༁ͳͲଟ͘ͷࣗવݴޠॲཧͰ༻͍ΒΕΔ • ʮೖྗ͞ΕΔϕΫτϧΛղऍ͢ΔʯΤϯίʔμʔ ʮղऍ͞ΕͨϕΫτϧ͔Βग़ྗϕΫτϧΛੜ͢Δʯ σίʔμʔ ͷ͔̎ͭΒͳΔ
41 / N TFRTFRΞʔΩςΫνϟ • Τϯίʔμʔ • 3//$//ͷΑ͏ͳΞʔΩςΫνϟ • ೖྗ͞ΕͨϕΫτϧΛʮղऍʯ͢ΔϕΫτϧ
ʮUIPVHIUWFDUPSʯΛੜͯ͠σίʔμʔʹ • σίʔμʔ • Τϯίʔμʔ͔ΒUIPVHIUWFDUPSΛड͚औͬͯ ࣮ࡍʹγʔέϯεΛੜ͢Δ
42 / N TFRTFRΤϯίʔμʔ
43 / N TFRTFRΤϯίʔμʔ
44 / N TFRTFRΤϯίʔμʔ
45 / N TFRTFRΤϯίʔμʔ 内部に隠れていた thought vectorをdecorder側へ
46 / N TFRTFRσίʔμʔ 内部に隠れていた thought vectorをdecorder側へ
47 / N TFRTFRσίʔμʔ 内部に隠れていた thought vectorをdecorder側へ
48 / N TFRTFRσίʔμʔ 内部に隠れていた thought vectorをdecorder側へ
49 / N TFRTFRֶश • ΤϯίʔμʔͱσίʔμʔΛಉ࣌ʹ ܇࿅σʔλΛ༻ֶ͍ͯश͢Δ ޡࠩσίʔμʔଆ͔ΒΤϯίʔμʔଆٯ ͞ΕΔ
50 / N "UUFOUJPO • "UUFOUJPO TFRTFR$//ͳͲͰซ༻ͯ͠ ༻͍ΒΕΔΞʔΩςΫνϟ • ʮΤϯίʔμʔଆͷͲͷ෦ʹண͢Δ͔ʁʯΛ
"UUFOUJPOσίʔμʔଆʹڭ͑Δ
51 / N TFRTFRͷܽ • TFRTFRͰʮΤϯίʔμʔʯͰͷ࠷ޙͷग़ྗʹ͓͚ ΔʮӅΕϕΫτϧͷΈʯΛσίʔμʔʹ͢ • ͲͷೖྗϕΫτϧʹ͖͔͔͢Βͳ͍ •
ใྔ͕ൈ͚མͪͯ͠·͏
52 / N Ξςϯγϣϯྫ • σίʔμʔ ग़ྗγʔέϯεੜ࣌ʹ "UUFOUJPOػߏ͔ΒϕΫτϧΛऔΓग़ͯ͠ ʮͲͷೖྗʹண͢Δ͔ʁʯΛܾΊΔ
53 / N Ξςϯγϣϯྫ ը૾ྫ