Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Amazon Bedrock AgentCore でプロモーション用動画生成エージェントを開発する
Search
Kiminori Yokoi
August 22, 2025
Technology
6
890
Amazon Bedrock AgentCore でプロモーション用動画生成エージェントを開発する
2025/8/22 豊洲会
Kiminori Yokoi
August 22, 2025
Tweet
Share
More Decks by Kiminori Yokoi
See All by Kiminori Yokoi
AWSでAgentic AIを開発するための前提知識の整理
nasuvitz
2
250
AIエージェントで90秒の広告動画を制作!台本・音声・映像・編集をつなぐAWS最新アーキテクチャの実践
nasuvitz
3
710
AI Agent による実装のベストプラクティス - AI Coding Agent の効果証明と組織展開
nasuvitz
21
5.9k
AIコーディングエージェント勉強会
nasuvitz
33
18k
社員3,000名が参加する社内AWS技術者コミュニティ 「TAWS-UG」運営の舞台裏
nasuvitz
1
270
Amazon Bedrock Multi-Agent Collaboration Workshop の紹介 - ワークショップでAIエージェントを学ぼう
nasuvitz
5
1.3k
私たちはどう生きるか - 今、Jr. Champions と Ambassadors の皆様と考えたいこと -
nasuvitz
4
510
Amazon Bedrockで画像生成AIを始めよう - 素敵画像を作る文学とAI絵師Botのススメ -
nasuvitz
0
76
AWS re:Invent 2023 で Generative AI を学ぼう! 関連セッションを一挙紹介!
nasuvitz
1
810
Other Decks in Technology
See All in Technology
生成AIを安心して活用するために──「情報セキュリティガイドライン」策定とポイント
gree_tech
PRO
0
250
事業開発におけるDify活用事例
kentarofujii
5
1.3k
AI時代の開発を加速する組織づくり - ブログでは書けなかったリアル
hiro8ma
1
260
データ戦略部門 紹介資料
sansan33
PRO
1
3.8k
「魔法少女まどか☆マギカ Magia Exedra」におけるバックエンドの技術選定
gree_tech
PRO
0
110
AI AgentをLangflowでサクッと作って、1日働かせてみた!
yano13
1
130
AWS DMS で SQL Server を移行してみた/aws-dms-sql-server-migration
emiki
0
120
会社を支える Pythonという言語戦略 ~なぜPythonを主要言語にしているのか?~
curekoshimizu
3
560
今この時代に技術とどう向き合うべきか
gree_tech
PRO
2
2.1k
Claude Codeを駆使した初めてのiOSアプリ開発 ~ゼロから3週間でグローバルハッカソンで入賞するまで~
oikon48
10
5.4k
ViteとTypeScriptのProject Referencesで 大規模モノレポのUIカタログのリリースサイクルを高速化する
shuta13
2
140
AI駆動で進める依存ライブラリ更新 ─ Vue プロジェクトの品質向上と開発スピード改善の実践録
sayn0
1
150
Featured
See All Featured
Making the Leap to Tech Lead
cromwellryan
135
9.6k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
Six Lessons from altMBA
skipperchong
29
4k
Building Better People: How to give real-time feedback that sticks.
wjessup
369
20k
Automating Front-end Workflow
addyosmani
1371
200k
The Invisible Side of Design
smashingmag
302
51k
Context Engineering - Making Every Token Count
addyosmani
7
300
The Cost Of JavaScript in 2023
addyosmani
55
9.1k
Building a Modern Day E-commerce SEO Strategy
aleyda
44
7.8k
The Illustrated Children's Guide to Kubernetes
chrisshort
49
51k
Typedesign – Prime Four
hannesfritz
42
2.8k
Writing Fast Ruby
sferik
629
62k
Transcript
Amazon Bedrock AgentCore で プロモーション用動画生成エージェントを開発する Kiminori Yokoi @nasuvit_z
AIエージェントとは • LLM(大規模言語モデル)を “頭脳” に、次に何をするか(制御フ ロー)を自ら決め、必要に応じてツールやコードを使ってタスクを完了する仕 組み • 従来は人間が行うタスクを、AIエージェントによってどこまで代替できるのかが 注目されている
AIエージェントとは (AWSの場合) 与えられた指示を解釈 Agentic loop (自律的なタスクの推進)
我々はAIエージェントに何を期待しているのか はじめに期待をはっきりさせておく方が良い • 指示を正しく解釈して欲しい • できるだけ簡単な指示で開始したい • 人間による補完は最小限にしたい • タスク計画を自律的に考えて欲しい
(=Agentic loopへの期待) • 指示ごとに実行順序 (ビジネスロジック) を組み立てて欲しい • 実行順序を事前に与えなくてもタスクを進めて欲しい
処理の違い • プログラム内部で一意に実行順序を定義し、内部的にAIを活用して処 理を実行するアプリケーション • 広義に 「LLMアプリ」 と呼ばれているもので、生成AI活用の第一歩 • 実行順序が事前定義されている、特定の1つのタスクを実行する
• 実行順序が予め決まっているため、Agentic loopを必要とせずに処理 が完結する • プログラム内部でエージェントとツールを定義し、リクエスト (指示内容) に応じてツールを組み合わせて処理を実行するアプリケーション • 「AIエージェント」 • 事前定義された実行順序がなく、指示の都度、定義される
処理の違い (噛み砕くと) • 従来型のLLMアプリ • 同じ順番で毎回流す 「決め打ちパイプライン」 • Agentic loopしなくても処理が終わる
• AIエージェント • ツール箱を持っていて、都度、方針を決定 • 依頼や状況に応じて順序と手段をその場で決め直す • 探索→実行→観測→再計画をループ (これがAgentic loop)
https://aws.amazon.com/jp/bedrock/agentcore/
Amazon Bedrock AgentCore とは • AIエージェントを安全に本番運用するためのモジュール群(インフラ+ ツール+運用管理)を提供するAWSのマネージドサービス • デプロイまでを5分で体験するサンプルコードは公式ブログを参照
<事例> プロモーション動画生成エージェント • 「台本作成」 「音声生成」 「動画生成」 「動画編集」 の4つのツールを持 たせたAIエージェント •
AIエージェントに自然言語で指示を出すと、これらのツールを自律的に組み 合わせて、動画を生成する
アーキテクチャ図 そのうちGUI作ります 今回はコマンドで
考慮点 • Amazon Nova Reel を使用した動画の生成は非同期処理 • 6秒間の動画の生成に約90秒、2分間の動画の生成に約14~17分かかる (公 式ドキュメント)
• AIエージェントは非同期処理を待つ必要がある (await asyncio.wait_forで実装) これを wait_for する
考慮点 • Amazon Nova Reel で6秒よりも長い動画を生成する MULTI_SHOT_AUTOMATEDを使用
MediaConvertで動画と音声を合成する Nova Reel 産の動画 Polly 産の音声 MediaConvertなら、従来FFmpegのようなツールに任せている処理を、APIで簡単に実行可能
生成された動画 こちら
AIエージェント化して良かったこと • 「簡単に指示して、寝て待っていれば完成する」 をお手軽に実現できる • 簡単なプロモーション用動画であれば、台本の考案作業や、編集作業 を必要とすることなく生成でき、従来の作業時間を90%以上削減 • ただし、動画と音声は、AIによる生成だと簡単にバレるようなクオリティで あることに注意
(ネタバラシして見せる方が良さそう) • 今回は非同期処理待ちが一部あったが、ツール呼び出しの実行順序を書く 必要が殆どないため、開発生産性も高い (Strands Agentsを使用)
Amazon Bedrock AgentCore の良いところ • agentcore launch コマンド一発でAIエージェントのコードをコンテナ化し てデプロイ可能 •
デプロイに必要な、あらゆる周辺サービス (ECRなど) の操作を意識すること なく、AIエージェントを動かすことが可能 • ツールはAIエージェントのコードに関数化して書くだけという手軽さだが、既に APIが公開されていればGatewayを介して利用することも可能 • 非同期処理も実行可能
AIエージェント化した方針を省みて今後に繋げる • 本来 「こうすればできる」 と初めから具体的なイメージが湧く処理は、実行 順序を事前定義できるため、AIエージェントとして実装しなくても良い • 但し、AIエージェント化で柔軟な変更ニーズに対応できる期待がある • 機能拡張は、実行順序の作り直しが少ない、AIエージェント+ツールの
方が容易である • 処理結果の確実性は、事前定義された実行順序の方が高い • AIエージェントは 「このツールを持たせておいたらあれもこれもできるんじゃ ないの?」 というイメージを先に持って、これを膨らませて作っていくのが良い • AIエージェント自体の要件や設計の抽象度を高く持つ • ChatGPTで出来る処理はChatGPTで良い 出来ないことを成す
Coming Soon • 現在、より高いクオリティの動画を作れないか、構成を見直しています • こんなツールを増やして動画のクオリティを高めたい! • 外部データソースの参照 • BGMの作成
• etc… • 今後の発展にご期待ください! (またどこかで披露します!)
Kiminori Yokoi @nasuvit_z END ご清聴ありがとうございました Amazon Bedrock AgentCore で プロモーション用動画生成エージェントを開発する