Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Amazon Bedrock AgentCore でプロモーション用動画生成エージェントを開発する
Search
Kiminori Yokoi
August 22, 2025
Technology
6
940
Amazon Bedrock AgentCore でプロモーション用動画生成エージェントを開発する
2025/8/22 豊洲会
Kiminori Yokoi
August 22, 2025
Tweet
Share
More Decks by Kiminori Yokoi
See All by Kiminori Yokoi
AIエージェントによる業務効率化への飽くなき挑戦-AWS上の実開発事例から学んだ効果、現実そしてギャップ-
nasuvitz
5
1.7k
AWSでAgentic AIを開発するための前提知識の整理
nasuvitz
2
310
AIエージェントで90秒の広告動画を制作!台本・音声・映像・編集をつなぐAWS最新アーキテクチャの実践
nasuvitz
3
750
AI Agent による実装のベストプラクティス - AI Coding Agent の効果証明と組織展開
nasuvitz
21
6.1k
AIコーディングエージェント勉強会
nasuvitz
33
18k
社員3,000名が参加する社内AWS技術者コミュニティ 「TAWS-UG」運営の舞台裏
nasuvitz
1
280
Amazon Bedrock Multi-Agent Collaboration Workshop の紹介 - ワークショップでAIエージェントを学ぼう
nasuvitz
5
1.3k
私たちはどう生きるか - 今、Jr. Champions と Ambassadors の皆様と考えたいこと -
nasuvitz
4
520
Amazon Bedrockで画像生成AIを始めよう - 素敵画像を作る文学とAI絵師Botのススメ -
nasuvitz
0
83
Other Decks in Technology
See All in Technology
旧から新へ: 大規模ウェブクローラの Perl から Go への移行 / YAPC::Fukuoka 2025
motemen
1
540
AWS資格は取ったけどIAMロールを腹落ちできてなかったので、年内に整理してみた
hiro_eng_
0
180
Amazon ECS デプロイツール ecspresso の開発を支える「正しい抽象化」の探求 / YAPC::Fukuoka 2025
fujiwara3
9
1.4k
AI時代におけるドメイン駆動設計 入門 / Introduction to Domain-Driven Design in the AI Era
fendo181
0
660
メタプログラミングRuby問題集の活用
willnet
2
760
Master Dataグループ紹介資料
sansan33
PRO
1
3.9k
QAエンジニアがプロダクト専任で チームの中に入ると。。。?/登壇資料(杉森 太樹)
hacobu
PRO
0
180
ググるより、AIに聞こう - Don’t Google it, ask AI
oikon48
0
820
なぜThrottleではなくDebounceだったのか? 700並列リクエストと戦うサーバーサイド実装のすべて
yoshiori
8
3k
Dart and Flutter MCP serverで実現する AI駆動E2Eテスト整備と自動操作
yukisakai1225
0
300
Data & AIの未来とLakeHouse
ishikawa_satoru
0
710
エンタープライズ企業における開発効率化のためのコンテキスト設計とその活用
sergicalsix
1
310
Featured
See All Featured
Java REST API Framework Comparison - PWX 2021
mraible
34
9k
Agile that works and the tools we love
rasmusluckow
331
21k
Rails Girls Zürich Keynote
gr2m
95
14k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
33
1.8k
How to train your dragon (web standard)
notwaldorf
97
6.4k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
24
1.5k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
2.9k
Scaling GitHub
holman
463
140k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
How STYLIGHT went responsive
nonsquared
100
5.9k
Transcript
Amazon Bedrock AgentCore で プロモーション用動画生成エージェントを開発する Kiminori Yokoi @nasuvit_z
AIエージェントとは • LLM(大規模言語モデル)を “頭脳” に、次に何をするか(制御フ ロー)を自ら決め、必要に応じてツールやコードを使ってタスクを完了する仕 組み • 従来は人間が行うタスクを、AIエージェントによってどこまで代替できるのかが 注目されている
AIエージェントとは (AWSの場合) 与えられた指示を解釈 Agentic loop (自律的なタスクの推進)
我々はAIエージェントに何を期待しているのか はじめに期待をはっきりさせておく方が良い • 指示を正しく解釈して欲しい • できるだけ簡単な指示で開始したい • 人間による補完は最小限にしたい • タスク計画を自律的に考えて欲しい
(=Agentic loopへの期待) • 指示ごとに実行順序 (ビジネスロジック) を組み立てて欲しい • 実行順序を事前に与えなくてもタスクを進めて欲しい
処理の違い • プログラム内部で一意に実行順序を定義し、内部的にAIを活用して処 理を実行するアプリケーション • 広義に 「LLMアプリ」 と呼ばれているもので、生成AI活用の第一歩 • 実行順序が事前定義されている、特定の1つのタスクを実行する
• 実行順序が予め決まっているため、Agentic loopを必要とせずに処理 が完結する • プログラム内部でエージェントとツールを定義し、リクエスト (指示内容) に応じてツールを組み合わせて処理を実行するアプリケーション • 「AIエージェント」 • 事前定義された実行順序がなく、指示の都度、定義される
処理の違い (噛み砕くと) • 従来型のLLMアプリ • 同じ順番で毎回流す 「決め打ちパイプライン」 • Agentic loopしなくても処理が終わる
• AIエージェント • ツール箱を持っていて、都度、方針を決定 • 依頼や状況に応じて順序と手段をその場で決め直す • 探索→実行→観測→再計画をループ (これがAgentic loop)
https://aws.amazon.com/jp/bedrock/agentcore/
Amazon Bedrock AgentCore とは • AIエージェントを安全に本番運用するためのモジュール群(インフラ+ ツール+運用管理)を提供するAWSのマネージドサービス • デプロイまでを5分で体験するサンプルコードは公式ブログを参照
<事例> プロモーション動画生成エージェント • 「台本作成」 「音声生成」 「動画生成」 「動画編集」 の4つのツールを持 たせたAIエージェント •
AIエージェントに自然言語で指示を出すと、これらのツールを自律的に組み 合わせて、動画を生成する
アーキテクチャ図 そのうちGUI作ります 今回はコマンドで
考慮点 • Amazon Nova Reel を使用した動画の生成は非同期処理 • 6秒間の動画の生成に約90秒、2分間の動画の生成に約14~17分かかる (公 式ドキュメント)
• AIエージェントは非同期処理を待つ必要がある (await asyncio.wait_forで実装) これを wait_for する
考慮点 • Amazon Nova Reel で6秒よりも長い動画を生成する MULTI_SHOT_AUTOMATEDを使用
MediaConvertで動画と音声を合成する Nova Reel 産の動画 Polly 産の音声 MediaConvertなら、従来FFmpegのようなツールに任せている処理を、APIで簡単に実行可能
生成された動画 こちら
AIエージェント化して良かったこと • 「簡単に指示して、寝て待っていれば完成する」 をお手軽に実現できる • 簡単なプロモーション用動画であれば、台本の考案作業や、編集作業 を必要とすることなく生成でき、従来の作業時間を90%以上削減 • ただし、動画と音声は、AIによる生成だと簡単にバレるようなクオリティで あることに注意
(ネタバラシして見せる方が良さそう) • 今回は非同期処理待ちが一部あったが、ツール呼び出しの実行順序を書く 必要が殆どないため、開発生産性も高い (Strands Agentsを使用)
Amazon Bedrock AgentCore の良いところ • agentcore launch コマンド一発でAIエージェントのコードをコンテナ化し てデプロイ可能 •
デプロイに必要な、あらゆる周辺サービス (ECRなど) の操作を意識すること なく、AIエージェントを動かすことが可能 • ツールはAIエージェントのコードに関数化して書くだけという手軽さだが、既に APIが公開されていればGatewayを介して利用することも可能 • 非同期処理も実行可能
AIエージェント化した方針を省みて今後に繋げる • 本来 「こうすればできる」 と初めから具体的なイメージが湧く処理は、実行 順序を事前定義できるため、AIエージェントとして実装しなくても良い • 但し、AIエージェント化で柔軟な変更ニーズに対応できる期待がある • 機能拡張は、実行順序の作り直しが少ない、AIエージェント+ツールの
方が容易である • 処理結果の確実性は、事前定義された実行順序の方が高い • AIエージェントは 「このツールを持たせておいたらあれもこれもできるんじゃ ないの?」 というイメージを先に持って、これを膨らませて作っていくのが良い • AIエージェント自体の要件や設計の抽象度を高く持つ • ChatGPTで出来る処理はChatGPTで良い 出来ないことを成す
Coming Soon • 現在、より高いクオリティの動画を作れないか、構成を見直しています • こんなツールを増やして動画のクオリティを高めたい! • 外部データソースの参照 • BGMの作成
• etc… • 今後の発展にご期待ください! (またどこかで披露します!)
Kiminori Yokoi @nasuvit_z END ご清聴ありがとうございました Amazon Bedrock AgentCore で プロモーション用動画生成エージェントを開発する