Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AIやマイクロサービスを活用したDynamoDB節約術
Search
gree_tech
PRO
January 17, 2020
Technology
0
440
AIやマイクロサービスを活用したDynamoDB節約術
「WFS Tech Talk #2」で発表された資料です。
https://gree.connpass.com/event/158257/
gree_tech
PRO
January 17, 2020
Tweet
Share
More Decks by gree_tech
See All by gree_tech
コミュニケーションに鍵を見いだす、エンジニア1年目の経験談
gree_tech
PRO
0
130
REALITY株式会社における開発生産性向上の取り組み: 失敗と成功から学んだこと
gree_tech
PRO
2
1.8k
『ヘブンバーンズレッド』におけるフィールドギミックの裏側
gree_tech
PRO
2
590
セキュリティインシデント対応の体制・運用の試行錯誤 / greetechcon2024-session-a1
gree_tech
PRO
1
600
『アナザーエデン 時空を超える猫』国内海外同時運営実現への道のり ~別々で開発されたアプリを安定して同時リリースするまでの取り組み~
gree_tech
PRO
1
570
『アサルトリリィ Last Bullet』におけるクラウドストリーミング技術を用いたブラウザゲーム化の紹介
gree_tech
PRO
1
650
UnityによるPCアプリの新しい選択肢。「PC版 Google Play Games」への対応について
gree_tech
PRO
1
1k
実機ビルドのエラーによる検証ブロッカーを0に!『ヘブンバーンズレッド』のスモークテスト自動化の取り組み
gree_tech
PRO
1
680
"ゲームQA業界の技術向上を目指す! 会社を超えた研究会の取り組み"
gree_tech
PRO
1
800
Other Decks in Technology
See All in Technology
激動の時代、新卒エンジニアはAIツールにどう向き合うか。 [LayerX Bet AI Day Countdown LT Day1 ツールの選択]
tak848
0
530
Amazon CloudWatchのメトリクスインターバルについて / Metrics interval matters
ymotongpoo
3
210
低レイヤソフトウェア技術者が YouTuberとして食っていこうとした話
sat
PRO
7
5.8k
Building GoReleaser - from shell script to paid product
caarlos0
0
260
ゼロから始めるSREの事業貢献 - 生成AI時代のSRE成長戦略と実践 / Starting SRE from Day One
shinyorke
PRO
0
230
データエンジニアリング 4年前と変わったこと、 4年前と変わらないこと
tanakarian
2
340
株式会社島津製作所_研究開発(集団協業と知的生産)の現場を支える、OSS知識基盤システムの導入
akahane92
1
1.1k
機械学習を「社会実装」するということ 2025年夏版 / Social Implementation of Machine Learning July 2025 Version
moepy_stats
1
470
AI時代にも変わらぬ価値を発揮したい: インフラ・クラウドを切り口にユーザー価値と非機能要件に向き合ってエンジニアとしての地力を培う
netmarkjp
0
210
複数のGemini CLIが同時開発する狂気 - Jujutsuが実現するAIエージェント協調の新世界
gunta
11
3.1k
20250719_JAWS_kobe
takuyay0ne
1
160
Talk to Someone At Delta Airlines™️ USA Contact Numbers
travelcarecenter
0
170
Featured
See All Featured
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.4k
Unsuck your backbone
ammeep
671
58k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
Agile that works and the tools we love
rasmusluckow
329
21k
What's in a price? How to price your products and services
michaelherold
246
12k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
357
30k
Building an army of robots
kneath
306
45k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
45
7.5k
Making the Leap to Tech Lead
cromwellryan
134
9.4k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
A better future with KSS
kneath
238
17k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Transcript
AIやマイクロサービスを活用した DynamoDB節約術 グリー株式会社 開発本部 インフラストラクチャ部 サービスインストレーショングループ 橋本順之
目次 • 前置き • コストの肝のキャパシティ • キャパシティの自動化 • まとめ 2
前置き • DynamoDB ◦ アナザーエデンとダンメモのメインストレージ ◦ 国内および海外を合わせると7箇所で運用 ◦ NoSQL:アクセス数に対してスケールしやすい ◦
データ量だけでなく、キャパシティ(スループット)で費用がかかる • 解決したい問題 ◦ メインストレージなのでサーバーの運用費を安くしたい ◦ 運用を自動化したい ▪ (20~50テーブル) x 7 の キャパシティを設定
キャパシティ • DynamoDBはキャパシティ(スループット)で費用がかかる • テーブル単位でキャパシティを設定 一時間:1リクエスト/秒 リード:$0.0001484 ライト:$0.000742
キャパシティ • DynamoDBはキャパシティ(スループット)で費用がかかる • テーブル単位でキャパシティを設定 一カ月:10000リクエスト/秒 ReadWriteこみで$6410
キャパシティ • DynamoDBはキャパシティを上げ下げすると安くなる プロビジョンされたキャパシティ 利用しているキャパシティ
キャパシティの注意点 • 利用しているキャパシティ > プロビジョンされたキャパシティの場合 ◦ アクセスに失敗します。 プロビジョンされたキャパシティ 利用しているキャパシティ
キャパシティ • (20~50テーブル) x 7 の キャパシティを設定
キャパシティの費用体系 • オンデマンド ◦ リクエストした分だけ費用がかかる ◦ これまでのピークの倍のスループットが出せる ◦ 0.001026USD/RCU (一時間)
• プロビジョニング ◦ あらかじめ決めたキャパシティで費用がかかる ▪ 0.0001484USD/RCU (一時間) ▪ RCU = 1秒1回のリード • リザーブドを買う(一年) ▪ 0.000029USD/RCU(一時間) • プロビジョニング • リザーブド • 自分でキャパシティ管理
キャパシティの費用体系(1Mリクエスト/秒) Read(USD 1MReq/sec) Write(USD 1MReq/sec) オンデマンド 0.285 1.427 プロビジョニング 0.041
0.206 リザーブド(1年) 0.008 0.041 東京リージョン、2020/01/14調査 例:プロビジョニング Read 0.041 = 0.0001484/3600*1000000
前置き • DynamoDB ◦ アナザーエデンとダンメモのメインストレージ ◦ 国内および海外を合わせると7箇所で運用 ◦ NoSQL:アクセス数に対してスケールしやすい ◦
データ量だけでなく、キャパシティ(スループット)で費用がかかる • 解決したい問題 ◦ メインストレージなのでサーバーの運用費を安くしたい ◦ 運用を自動化したい ▪ (20~50テーブル) x 7 の キャパシティを設定
キャパシティをコントロールするシステム構成 • AWS Lambdaで構成 • 特徴 ◦ AIが5分おきにキャパシティを調整 ◦ 突発の負荷に対応(設定値を超えると自動で増やす)
• 定常の調整 ◦ 設定値の40%の負荷で調整 ◦ 前日の負荷をみてAIが当日のキャパシティを調整 ◦ Haskellでかかれているので安全 • イベントのための調整 ◦ ユーザーが設定 ◦ AIが自動と手動(ユーザー定義)を切り替える
キャパシティをコントロールするシステム構成
まとめ • DynamoDB ◦ アナザーエデンとダンメモのメインストレージ (7箇所) ◦ 安く使うにはリザーブドがおすすめ ◦ キャパシティをテーブルごとにコントロールする必要があります
◦ 問題:テーブルが多い。(20~50テーブル) x 7 • 対応策 ◦ ユーザーによるスケジュールと前日の利用量からAIがキャパシティをコント ロール ◦ AWS Lambda の無料利用枠には、1 か月に 1,000,000 件の無料リクエスト ▪ 5分おきの実行:8640回/月 ▪ 100テーブル程度なら無料
ご清聴ありがとうございました。