Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Laravel Collectionの計算量を調べてみた2023/laravel_collec...
Search
Ryo Tomidokoro
June 23, 2023
Technology
1
1.8k
Laravel Collectionの計算量を調べてみた2023/laravel_collection_time_complexity_2023
Laravel Verison 10 と PHP8.2 で調査しなおしました。
Ryo Tomidokoro
June 23, 2023
Tweet
Share
More Decks by Ryo Tomidokoro
See All by Ryo Tomidokoro
Spec Driven Development入門/spec_driven_development_for_learners
hanhan1978
1
650
フロントエンドがTypeScriptなら、バックエンドはPHPでもいいじゃない/php-is-not-bad
hanhan1978
8
13k
どうすると生き残れないのか/how-not-to-survive
hanhan1978
17
14k
100分で本番デプロイ!Laravelで作るWebアプリケーション作成/100min_web_app_cicd
hanhan1978
1
200
PHPerのための計算量入門/Complexity101 for PHPer
hanhan1978
8
3.2k
集中して作業する技術/how_to_work_deeply
hanhan1978
65
52k
PHPでデータベースを作ってみた/create-data-with-php
hanhan1978
11
11k
ADRを一年運用してみた/adr_after_a_year
hanhan1978
8
4.5k
B+木入門:PHPで理解する データベースインデックスの仕組み/b-plus-tree-101
hanhan1978
5
5.6k
Other Decks in Technology
See All in Technology
OPENLOGI Company Profile for engineer
hr01
1
46k
ラスベガスの歩き方 2025年版(re:Invent 事前勉強会)
junjikoide
0
930
AWS re:Invent 2025事前勉強会資料 / AWS re:Invent 2025 pre study meetup
kinunori
0
1.1k
CloudComposerによる大規模ETL 「制御と実行の分離」の実践
leveragestech
0
180
データエンジニアとして生存するために 〜界隈を盛り上げる「お祭り」が必要な理由〜 / data_summit_findy_Session_1
sansan_randd
1
960
今から間に合う re:Invent 準備グッズと現地の地図、その他ラスベガスを周る際の Tips/reinvent-preparation-guide
emiki
1
280
窓口業務を生成AIにおまかせ!Bedrock Agent Coreで実現する自治体AIエージェント!
rayofhopejp
0
160
書籍『実践 Apache Iceberg』の歩き方
ishikawa_satoru
0
470
Amazon Q Developer CLIをClaude Codeから使うためのベストプラクティスを考えてみた
dar_kuma_san
0
340
Playwrightで始めるUI自動テスト入門
devops_vtj
0
140
Digitization部 紹介資料
sansan33
PRO
1
5.8k
最近読んで良かった本 / Yokohama North Meetup #10
mktakuya
0
770
Featured
See All Featured
Leading Effective Engineering Teams in the AI Era
addyosmani
8
720
Git: the NoSQL Database
bkeepers
PRO
431
66k
How GitHub (no longer) Works
holman
315
140k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
2.9k
[RailsConf 2023] Rails as a piece of cake
palkan
57
6k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.2k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.8k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
Scaling GitHub
holman
463
140k
Transcript
@hanhan1978 Laravel Collectionの計算量を調べてみた 2023年度版 (非公式)PHPカンファレンス福岡 前夜祭 2023/06/23
@hanhan1978 • 富所 亮 • 所属 株式会社カオナビ BackEnd Re-architecturing Team
(BERT) • 職業 バックエンドエンジニア • ブログ https://blog.hanhans.net • Yokohama North AM https://anchor.fm/yokohama-north-am 2
2018年に発表していた内容を最新バー ジョンでやってみました
これの2023年版 Laravel Version 5.7
計算量についておさらい 本日は時間計算量を扱います
https://speakerdeck.com/hanhan1978/basic-knowledge-of-space-complexity 空間計算量については、こっちのスライドを参照
例えばレビューしている時
「この処理遅そう」 これだと分かりにくい。 処理の時間的速度を共通知識で伝えたい
英語だと Time Complexity 時間複雑性 プログラムの処理に どれくらい時間がかかるかを 数学的に扱う
O記法 O(1) O(log n) O(n) O(n * log n) O(n^2)
プログラムの時間的計算量を表す
O記法 データ量が増加した場合の 処理時間の増加傾向が分かる
http://www.techscore.com/blog/2016/08/08/開発新卒に捧ぐ、基本のアルゴリズムと計算量 / データ量と計算量 [グラフ引用] 開発新卒に捧ぐ、基本のアルゴリズムと計算量
計算量とアルゴリズム アルゴリズム 計算量 バブルソート O(n^2) マージソート O(n log n) バイナリサーチ
O(log n) アルゴリズムによって計算量が異なる
さらに詳しく知りたい人 数学ガール4 乱択アルゴリズム 2章と6章を読むべし
Laravel Collection各メソッドの計算量
細かすぎて見えない!
share しておきます https://docs.google.com/spreadsheets/d/1RbHo6huSTBkdSpWoCMRyS0E5bBvaYJdWUO3NHL VFfYg/edit?usp=sharing
雑にまとめると
• ほとんど O(n) O(1) • O(n^2) 以上が30個
要注意メソッド • crossJoin O(n^t) • diff系 O(n^t) • flat系 O(n^t)
• flatten系 O(n^2) • merge系 O(n^2) • intersect系 O(n^2)
実測してみた
where - O(n)
count - O(1)
shift - O(n^2)
計算量が分かったとして 何か良いことあるのか?
知らないと悪いことが起きる
実際にあったかもしれない 計算量が問題になったコード例 ※実話を元にしたフィクション
全件取得 ページングのために全 件ループで回す 例1
全件取得 ページングのために全 件ループで回す 例1 ページの後半に行けば行くほど ループが回って遅くなる O(n)
例2 第1ループで全件回す O(n) 第2ループも全件回す O(n)
合わせ技 O(n^2) O(n)を入れ子にすればパワーアップ 例2 第1ループで全件回す O(n) 第2ループも全件回す O(n)
例2 第1ループで全件回す O(n) 第2ループも全件回す O(n) 第一引数は最大で数百件程度だったが 第二引数のデータ数が成長していくと…
事前に検知できないか?
実は例1・2のコードは 単体テスト -> 通過 受け入れテスト -> 通過 通過してしまっていた…
データが増えないと問題にならない
http://www.techscore.com/blog/2016/08/08/開発新卒に捧ぐ、基本のアルゴリズムと計算量 / データ量と計算量(再掲) [グラフ引用] 開発新卒に捧ぐ、基本のアルゴリズムと計算量
負荷テスト コードレビュー 事前検出可能な砦
負荷テスト データ量が莫大になることが わかっているプロダクトは行っている。 通常のプロダクトだと あんまりやってるの見たこと無い。
コードレビュー レビュアーのスキルや経験に依存 事前に計算量について チーム内で勉強会とかしてれば 指摘&修正は簡単だと思う
監視ツールで、処理時間のメトリクスを見て 理詰めで処理時間の遅い部分を特定できれば まあ、及第点だと思う。 最悪見逃しても
まとめ
• 計算量はデータのサイジングが肝 • データ量がすくないなら、問題にならない • 過剰品質には気をつけよう! バランスの良い判断をしよう
おまけ
計算量が一目瞭然
データの集まりを扱うプログラムは 計算量を確認しましょう
random 8.2 で Random が改善
たまに、Laravel側の実装変更で思いっき り劣化することがあるので注意! uniqueとか....
おしまい