Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Laravel Collectionの計算量を調べてみた2023/laravel_collec...
Search
Ryo Tomidokoro
June 23, 2023
Technology
1
1.5k
Laravel Collectionの計算量を調べてみた2023/laravel_collection_time_complexity_2023
Laravel Verison 10 と PHP8.2 で調査しなおしました。
Ryo Tomidokoro
June 23, 2023
Tweet
Share
More Decks by Ryo Tomidokoro
See All by Ryo Tomidokoro
100分で本番デプロイ!Laravelで作るWebアプリケーション作成/100min_web_app_cicd
hanhan1978
1
49
PHPerのための計算量入門/Complexity101 for PHPer
hanhan1978
6
1.8k
集中して作業する技術/how_to_work_deeply
hanhan1978
62
46k
PHPでデータベースを作ってみた/create-data-with-php
hanhan1978
11
9.7k
ADRを一年運用してみた/adr_after_a_year
hanhan1978
8
3.8k
B+木入門:PHPで理解する データベースインデックスの仕組み/b-plus-tree-101
hanhan1978
5
4.9k
ADRを一年運用してみた/our_story_about_adr
hanhan1978
5
2.1k
PHPで学ぶ Session の基本と応用 / web-app-session-101-2024
hanhan1978
12
5.7k
レガシー回避のPHP開発術/avoid_php_legacy
hanhan1978
16
13k
Other Decks in Technology
See All in Technology
10分で紹介するAmazon Bedrock利用時のセキュリティ対策 / 10-minutes introduction to security measures when using Amazon Bedrock
hideakiaoyagi
0
180
一度 Expo の採用を断念したけど、 再度 Expo の導入を検討している話
ichiki1023
1
160
バックエンドエンジニアのためのフロントエンド入門 #devsumiC
panda_program
18
7.4k
個人開発から公式機能へ: PlaywrightとRailsをつなげた3年の軌跡
yusukeiwaki
11
3k
2024.02.19 W&B AIエージェントLT会 / AIエージェントが業務を代行するための計画と実行 / Algomatic 宮脇
smiyawaki0820
12
2.9k
第13回 Data-Centric AI勉強会, 画像認識におけるData-centric AI
ksaito_osx
0
370
現場の種を事業の芽にする - エンジニア主導のイノベーションを事業戦略に装着する方法 -
kzkmaeda
2
2k
Nekko Cloud、 これまでとこれから ~学生サークルが作る、 小さなクラウド
logica0419
2
950
表現を育てる
kiyou77
1
210
Developer Summit 2025 [14-D-1] Yuki Hattori
yuhattor
19
6.1k
レビューを増やしつつ 高評価維持するテクニック
tsuzuki817
1
670
偶然 × 行動で人生の可能性を広げよう / Serendipity × Action: Discover Your Possibilities
ar_tama
1
1.1k
Featured
See All Featured
Building a Modern Day E-commerce SEO Strategy
aleyda
38
7.1k
How to Ace a Technical Interview
jacobian
276
23k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
29
1k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
RailsConf 2023
tenderlove
29
1k
The Invisible Side of Design
smashingmag
299
50k
Automating Front-end Workflow
addyosmani
1368
200k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
Scaling GitHub
holman
459
140k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.4k
A designer walks into a library…
pauljervisheath
205
24k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.3k
Transcript
@hanhan1978 Laravel Collectionの計算量を調べてみた 2023年度版 (非公式)PHPカンファレンス福岡 前夜祭 2023/06/23
@hanhan1978 • 富所 亮 • 所属 株式会社カオナビ BackEnd Re-architecturing Team
(BERT) • 職業 バックエンドエンジニア • ブログ https://blog.hanhans.net • Yokohama North AM https://anchor.fm/yokohama-north-am 2
2018年に発表していた内容を最新バー ジョンでやってみました
これの2023年版 Laravel Version 5.7
計算量についておさらい 本日は時間計算量を扱います
https://speakerdeck.com/hanhan1978/basic-knowledge-of-space-complexity 空間計算量については、こっちのスライドを参照
例えばレビューしている時
「この処理遅そう」 これだと分かりにくい。 処理の時間的速度を共通知識で伝えたい
英語だと Time Complexity 時間複雑性 プログラムの処理に どれくらい時間がかかるかを 数学的に扱う
O記法 O(1) O(log n) O(n) O(n * log n) O(n^2)
プログラムの時間的計算量を表す
O記法 データ量が増加した場合の 処理時間の増加傾向が分かる
http://www.techscore.com/blog/2016/08/08/開発新卒に捧ぐ、基本のアルゴリズムと計算量 / データ量と計算量 [グラフ引用] 開発新卒に捧ぐ、基本のアルゴリズムと計算量
計算量とアルゴリズム アルゴリズム 計算量 バブルソート O(n^2) マージソート O(n log n) バイナリサーチ
O(log n) アルゴリズムによって計算量が異なる
さらに詳しく知りたい人 数学ガール4 乱択アルゴリズム 2章と6章を読むべし
Laravel Collection各メソッドの計算量
細かすぎて見えない!
share しておきます https://docs.google.com/spreadsheets/d/1RbHo6huSTBkdSpWoCMRyS0E5bBvaYJdWUO3NHL VFfYg/edit?usp=sharing
雑にまとめると
• ほとんど O(n) O(1) • O(n^2) 以上が30個
要注意メソッド • crossJoin O(n^t) • diff系 O(n^t) • flat系 O(n^t)
• flatten系 O(n^2) • merge系 O(n^2) • intersect系 O(n^2)
実測してみた
where - O(n)
count - O(1)
shift - O(n^2)
計算量が分かったとして 何か良いことあるのか?
知らないと悪いことが起きる
実際にあったかもしれない 計算量が問題になったコード例 ※実話を元にしたフィクション
全件取得 ページングのために全 件ループで回す 例1
全件取得 ページングのために全 件ループで回す 例1 ページの後半に行けば行くほど ループが回って遅くなる O(n)
例2 第1ループで全件回す O(n) 第2ループも全件回す O(n)
合わせ技 O(n^2) O(n)を入れ子にすればパワーアップ 例2 第1ループで全件回す O(n) 第2ループも全件回す O(n)
例2 第1ループで全件回す O(n) 第2ループも全件回す O(n) 第一引数は最大で数百件程度だったが 第二引数のデータ数が成長していくと…
事前に検知できないか?
実は例1・2のコードは 単体テスト -> 通過 受け入れテスト -> 通過 通過してしまっていた…
データが増えないと問題にならない
http://www.techscore.com/blog/2016/08/08/開発新卒に捧ぐ、基本のアルゴリズムと計算量 / データ量と計算量(再掲) [グラフ引用] 開発新卒に捧ぐ、基本のアルゴリズムと計算量
負荷テスト コードレビュー 事前検出可能な砦
負荷テスト データ量が莫大になることが わかっているプロダクトは行っている。 通常のプロダクトだと あんまりやってるの見たこと無い。
コードレビュー レビュアーのスキルや経験に依存 事前に計算量について チーム内で勉強会とかしてれば 指摘&修正は簡単だと思う
監視ツールで、処理時間のメトリクスを見て 理詰めで処理時間の遅い部分を特定できれば まあ、及第点だと思う。 最悪見逃しても
まとめ
• 計算量はデータのサイジングが肝 • データ量がすくないなら、問題にならない • 過剰品質には気をつけよう! バランスの良い判断をしよう
おまけ
計算量が一目瞭然
データの集まりを扱うプログラムは 計算量を確認しましょう
random 8.2 で Random が改善
たまに、Laravel側の実装変更で思いっき り劣化することがあるので注意! uniqueとか....
おしまい