Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
A Deep Reinforcement Learning Chatbot
Search
hasewo
November 27, 2017
Research
1
860
A Deep Reinforcement Learning Chatbot
Nextremer11月論文読み会の資料です。
連絡先:
[email protected]
twitter:@hasewogamer
hasewo
November 27, 2017
Tweet
Share
More Decks by hasewo
See All by hasewo
『これからの強化学習』3.7
hasewo
0
930
Other Decks in Research
See All in Research
Satellites Reveal Mobility: A Commuting Origin-destination Flow Generator for Global Cities
satai
3
220
SkySense V2: A Unified Foundation Model for Multi-modal Remote Sensing
satai
3
190
超高速データサイエンス
matsui_528
1
320
Tiaccoon: Unified Access Control with Multiple Transports in Container Networks
hiroyaonoe
0
140
HoliTracer:Holistic Vectorization of Geographic Objects from Large-Size Remote Sensing Imagery
satai
3
340
Earth AI: Unlocking Geospatial Insights with Foundation Models and Cross-Modal Reasoning
satai
2
150
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
300
令和最新技術で伝統掲示板を再構築: HonoX で作る型安全なスレッドフロート型掲示板 / かろっく@calloc134 - Hono Conference 2025
calloc134
0
450
その推薦システムの評価指標、ユーザーの感覚とズレてるかも
kuri8ive
1
280
日本語新聞記事を用いた大規模言語モデルの暗記定量化 / LLMC2025
upura
0
370
AIグラフィックデザインの進化:断片から統合(One Piece)へ / From Fragment to One Piece: A Survey on AI-Driven Graphic Design
shunk031
0
570
Time to Cash: The Full Stack Breakdown of Modern ATM Attacks
ratatata
0
180
Featured
See All Featured
Git: the NoSQL Database
bkeepers
PRO
432
66k
Code Reviewing Like a Champion
maltzj
527
40k
Pawsitive SEO: Lessons from My Dog (and Many Mistakes) on Thriving as a Consultant in the Age of AI
davidcarrasco
0
32
Unsuck your backbone
ammeep
671
58k
Designing for Performance
lara
610
69k
Taking LLMs out of the black box: A practical guide to human-in-the-loop distillation
inesmontani
PRO
3
1.9k
Primal Persuasion: How to Engage the Brain for Learning That Lasts
tmiket
0
180
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
0
290
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.3k
YesSQL, Process and Tooling at Scale
rocio
174
15k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.3k
Prompt Engineering for Job Search
mfonobong
0
120
Transcript
Nextremer Co., LTD. Confidential Document Nextremer 2017/08/31 1 A Deep
Reinforecement Learning Chatbot 2017/ 11/25 nextremerエンジニア 酒井正⼈ 1
⽬次 • 概要 • どんなもの? • Amazon Alexa Prize •
MIRABOT • どんな技術を使ってる? • 22個の対話モデル(Appendixへ) • 最適化アルゴリズム • 検証⽅法 • ABテスト • 所感 • Appendix:22個の対話モデル解説 2017/11/25 Nextremer Co., LTD. Confidential Document 2
概要 Amazonが主宰する対話モデルのコンペティション(Amazon Alexa Prize)で、深層強化学習を⽤いることで20分以上の⼈間との雑談 対話を達成したモデルを紹介します 2017/11/25 Nextremer Co., LTD. Confidential
Document 3
4 Amazon Alexa Prize
Amazon Alexa Prize わかりやすい対話をなるべく⻑く続ける ソーシャルボットのコンペティション • 優勝者には$500, 000 • 優勝したボットが20分以上対話できる場合は
ボーナス$1,000,000 2017/11/25 Nextremer Co., LTD. Confidential Document 5
論⽂で紹介しているモデル • アンサンブル対話モデル:MIRABOT • 22個の対話モデルを搭載 • テンプレートベース • 検索ベース •
⽣成ベース • 深層強化学習により最適な返答を選択 2017/11/25 Nextremer Co., LTD. Confidential Document 6
どんなもの? 2017/11/25 Nextremer Co., LTD. Confidential Document 7
どんなもの? 2017/11/25 Nextremer Co., LTD. Confidential Document 8 22個の対話モデルが⼀ ⻫に応答候補を出⼒し
ます Automatic Speech Recognition の信頼度 閾値より低い場合はユーザーに聞 き返します 強化学習で応答の候 補を選択します 候補をもとに応 答を最適化しま す 優先度のある候補があれ ばそれを出⼒します
会話の様⼦ 2017/11/25 Nextremer Co., LTD. Confidential Document 9
10 最適化モデル
最適化法① Supervised AMT • クラウドソーシングでアノテーションされたデータ をもとに教師ありニューラルネット学習 • t-1の会話の履歴と応答の候補を⼊⼒ • t時点での各応答に対するスコアを算出する
vAmazonMechanicalTurk https://aws.amazon.com/jp/mturk/ 2017/11/25 Nextremer Co., LTD. Confidential Document 11
最適化法① Supervised AMT テスト • モデルが選択した応答がどの程度良いか • ⽐較対象 • ランダム
• Alice bot • Evi bot + Alice bot • 結果 • 分布が多少なだらかに 2017/11/25 Nextremer Co., LTD. Confidential Document 12
最適化法② Supervised Learned Reward Supervised AMTにおいて、ラベルの値をそのま ま使う代わりに という関数で線形近似している • Alexaのリアルユーザーを想定してのこと?
2017/11/25 Nextremer Co., LTD. Confidential Document 13
強化学習の⽤語 2017/11/25 Nextremer Co., LTD. Confidential Document 14 右図では、マリオが行動する主体(エージェント) 陸地、ブロック(環境)
停止、(左右に)歩くor走る、ジャンプ(行動) ジャンプ→ブロックからコインがでる(状態) コインが得られる(報酬) マリオの行動を最適化する作戦(方策) ステージクリア後得られるコインや点数(収益) 強化学習の⽬的は収益の最⼤化=⽅策の最適化
価値反復による最適⽅策の求め⽅ 2017/11/25 Nextremer Co., LTD. Confidential Document 15
⽅策勾配による最適⽅策の求め⽅ 価値反復とは異なるアプローチとして、⽅策を⾏動価値関数とは別 のパラメータで表現する。 ⽅策勾配では確率的⽅策をパラメータベクトルθによってパラメタ ライズされた確率モデル" と考え、これをθについて最適化 することで強化学習問題を解く。 2017/11/25 Nextremer Co.,
LTD. Confidential Document 16 前述のマリオのパターンは状態や行 動が離散化しやすいケースだった。 しかし、右図のようなゴルフゲーム の場合は、カップまでの距離や風の 強さ(風向き)、スイングの強さが 連続値になってしまう。 離散化が荒いと情報量が減り、細か すぎると計算量が膨大になる。
⽅策勾配による最適⽅策の求め⽅ 期待収益を⽬的関数J として、これを最⼤化する確率的⽅策" を 求める θ ← θ + α▽θ
J(θ) ①⽅策" による⾏動 ②⽅策" の評価 ③⽅策" の更新 のステップを繰り返し期待収益Jの勾配を求めてθを更新 αは学習率 2017/11/25 Nextremer Co., LTD. Confidential Document 17
最適化法③④ • Off-policy REINFORCE • Off-policy REINFORCE with Learned Reward
Function 2017/11/25 Nextremer Co., LTD. Confidential Document 18 cは重要度で、今まで学習し た⽅策と同じかどうかをみ る。⼀致していると下がり、 新しいものだとあがる。 次の発話でユーザーがネガ ティブな反応をした場合報 酬は0。それ以外は、今ま での総利益からターン数を 割る。
最適化法⑤ Q-learning with the Abstract Discourse Markov Decision Process •
マルコフ決定過程(MDP) • 状態遷移が確率的に⽣じるモデル • 状態遷移がマルコフ性を満たす vマルコフ性: 将来の状態が現在の状態のみに依存し、 過去のいかなる状態にも依存しない性質 2017/11/25 Nextremer Co., LTD. Confidential Document 19
最適化法⑤ Abstract Discourse Markov Decision Process 2017/11/25 Nextremer Co., LTD.
Confidential Document 20
最適化法⑤ Abstract Discourse Markov Decision Process 2017/11/25 Nextremer Co., LTD.
Confidential Document 21 zはここでは状態 ユーザー発話の種 類、感情、⼀般性、 トピックの独⽴性 など hは履歴、aは⾏動、 rは得られる報酬 y = {very poor, poor, acceptable, good, excellent}
最適化法⑤ 学習⽅法はε-greedy法 学習する段階で最も報酬の⾼い⽅策を選びつつ、 ⼀定の確率でランダムな⽅策を試す 本論⽂では10% → 10回に⼀回ランダム 2017/11/25 Nextremer Co.,
LTD. Confidential Document 22
参考:最適化法ごとの対話モデル選択率 2017/11/25 Nextremer Co., LTD. Confidential Document 23
24 評価
A/Bテスト • ⼀回⽬ • ⼆回⽬ 2017/11/25 Nextremer Co., LTD. Confidential
Document 25
所感 • 既存の技術を組み合わせるだけで結構強い • 対話モデル・⾃然⾔語処理・強化学習を⼀気におさらいできた • 読むのは⼤変だった • もっと深く掘り下げられると思うし、初⼼者から上級者の⼈でも 何かしら得るものがあると思うので、トライしてみてください
2017/11/25 Nextremer Co., LTD. Confidential Document 26
27 Appendix: 搭載されている対話モデルの紹介
テンプレートベース • Elizabot 2017/11/25 Nextremer Co., LTD. Confidential Document 28
テンプレートベース • AliceBOT 2017/11/25 Nextremer Co., LTD. Confidential Document 29
テンプレートベース • Initiatorbot • 会話のきっかけをつくるbot • ”What did you do
today?”や”Do you have a pets?”など • Storybot • ユーザーのリクエストで童話について話す • タイトル • あらすじ • 著者名 • Evibot • ⼊⼒⽂の”Who”とか”What”に反応 • wikipediaから答えを持ってきたりできる • BoWMovies • 映画の会話 2017/11/25 Nextremer Co., LTD. Confidential Document 30
探索ベースニューラルネットワーク • VHRED models • encoder-decoderベースの対話モデル • 意味の解析→単語の⽣成 • 埋め込みベクトルはGloVe
• 複数のジャンルを学習し、それぞれモデル化 • Reddit • 政治 • ニュース • スポーツ • 映画 • 映画のサブタイトル • ワシントンポスト 2017/11/25 Nextremer Co., LTD. Confidential Document 31
探索ベースニューラルネットワーク • SkipThoughtBooks • SkipThought • 教師なし学習で⽂をベクトル化する san in 引⽤
http://ksksksks2.hatenadiary.jp/entry/20160424/1461494269 2017/11/25 Nextremer Co., LTD. Confidential Document 32
探索ベースニューラルネットワーク • Bag-of-words Retrieval Models • トランプ⼤統領のツイッターを学習 • BoWEscapePlan •
他のモデルで回答できなかったときのパターン • ロジスティック回帰を⽤いている? • LSTMClassifierMSMarco • bi-LSTM • microsoftが公開した質問応答のデータセット 2017/11/25 Nextremer Co., LTD. Confidential Document 33