Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Unknown Evolution of the Built-in Function pow
Search
HayaoSuzuki
October 15, 2021
Technology
0
1.4k
Unknown Evolution of the Built-in Function pow
PyCon JP 2021
HayaoSuzuki
October 15, 2021
Tweet
Share
More Decks by HayaoSuzuki
See All by HayaoSuzuki
Tomorrow graphlib, Let us use everybody
hayaosuzuki
0
170
Tasting "Python Distilled"
hayaosuzuki
0
310
Let's implement useless Python objects
hayaosuzuki
0
1.9k
How to Write Robust Python Code
hayaosuzuki
5
4.4k
Python for Everyday
hayaosuzuki
1
2.2k
How to Use In-Memory Streams
hayaosuzuki
1
5.6k
Do you know cmath module?
hayaosuzuki
0
3.3k
Elementary Number Theory with Python
hayaosuzuki
1
3.5k
Django QuerySet "ARE" Patterns
hayaosuzuki
0
3.3k
Other Decks in Technology
See All in Technology
Why Governance Matters: The Key to Reducing Risk Without Slowing Down
sarahjwells
0
100
Access-what? why and how, A11Y for All - Nordic.js 2025
gdomiciano
1
110
Why React!?? Next.jsそしてReactを改めてイチから選ぶ
ypresto
10
4.4k
Geospatialの世界最前線を探る [2025年版]
dayjournal
3
490
動画データのポテンシャルを引き出す! Databricks と AI活用への奮闘記(現在進行形)
databricksjapan
0
140
いま注目しているデータエンジニアリングの論点
ikkimiyazaki
0
580
LLMアプリケーション開発におけるセキュリティリスクと対策 / LLM Application Security
flatt_security
7
1.8k
成長自己責任時代のあるきかた/How to navigate the era of personal responsibility for growth
kwappa
3
260
10年の共創が示す、これからの開発者と企業の関係 ~ Crossroad
soracom
PRO
1
170
研究開発部メンバーの働き⽅ / Sansan R&D Profile
sansan33
PRO
3
20k
職種別ミートアップで社内から盛り上げる アウトプット文化の醸成と関係強化/ #DevRelKaigi
nishiuma
2
130
空間を設計する力を考える / 20251004 Naoki Takahashi
shift_evolve
PRO
3
320
Featured
See All Featured
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Writing Fast Ruby
sferik
629
62k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
32
2.2k
For a Future-Friendly Web
brad_frost
180
9.9k
The Cost Of JavaScript in 2023
addyosmani
53
9k
The World Runs on Bad Software
bkeepers
PRO
71
11k
Six Lessons from altMBA
skipperchong
28
4k
Being A Developer After 40
akosma
91
590k
Making Projects Easy
brettharned
119
6.4k
It's Worth the Effort
3n
187
28k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.7k
Transcript
ΈࠐΈؔ pow ͷΒΕ͟ΔਐԽ Unknown Evolution of the Built-in Function pow
Hayao Suzuki PyCon JP 2021 October 15, 2021
ൃදʹࡍͯ͠ GitHub › https://github.com/HayaoSuzuki/pyconjp2021 Twitter ϋογϡλά › #pyconjp #pyconjp_3 PyCon
JP 2021 Discord › #hayao-suzuki-ΈࠐΈؔ pow ͷΒΕ͟ΔਐԽ › #pyconjp_3 ʢ1 17:30ʙ18:15ʣ 2 / 33
Who am I ? ͓લ୭Α ໊લ Hayao Suzukiʢླɹॣʣ Twitter @CardinalXaro
ࣄ Software Developer @ BeProud Inc. › גࣜձࣾϏʔϓϥυ › IT ษڧձࢧԉαʔϏε connpass › ΦϯϥΠϯֶशαʔϏε PyQ › γεςϜ։ൃͷͨΊͷυΩϡϝϯταʔϏε Tracery 3 / 33
Who am I ? ༁ɾࠪಡٕͨ͠ज़ॻʢൈਮʣ › ೖ Python 3 ୈ
2 ൛ (O’Reilly Japan) › Effective Python ୈ 2 ൛ (O’Reilly Japan) › ػցֶशʹΑΔ࣮༻ΞϓϦέʔγϣϯߏங (O’Reilly Japan) › PyTorch ͱ fastai Ͱ͡ΊΔσΟʔϓϥʔχϯά (O’Reilly Japan) › ࣮ફ ࣌ܥྻղੳ (O’Reilly Japan) New! › ػցֶशσβΠϯύλʔϯ (O’Reilly Japan) New! https://xaro.hatenablog.jp/ ʹϦετ͕͋Γ·͢ɻ 4 / 33
Who am I ? ൃදϦετʢൈਮʣ › ϨΨγʔ Django ΞϓϦέʔγϣϯͷݱԽ (DjangoCongress
JP 2018) › SymPy ʹΑΔࣜॲཧ (PyCon JP 2018) › Python ͱָ͠Ήॳ (PyCon mini Hiroshima 2019) › ܅ cmath Λ͍ͬͯΔ͔ (PyCon mini Shizuoka 2020) › ΠϯϝϞϦʔετϦʔϜ׆༻ज़ (PyCon JP 2020) https://xaro.hatenablog.jp/ ʹϦετ͕͋Γ·͢ɻ 5 / 33
ࠓͷඪ ΈࠐΈؔ pow › pow ؔͷႈΛฦؔ͢ › Python ʹݶΒͣɺେͷݴޠʹ pow
͕ؔଘࡏ͢Δ Python 3.8 ͰػೳՃ › m Λ๏ͱ͢Δ༨ྨʹ͓͚Δ๏ٯݩ͕ܭࢉͰ͖Δ › Α͘Θ͔Βͳ͍୯ޠΛฒΔͳʂ 6 / 33
ࠓͷඪ ΈࠐΈؔ pow ͷΒΕ͟ΔਐԽ › Python 3.8 ͰՃ͞Εͨ pow ؔͷ৽ػೳΛཧղ͢Δ
› ʮ m Λ๏ͱ͢Δ༨ྨʹ͓͚ΔٯݩʯͷҙຯΛཧղ͢Δ › ʮ m Λ๏ͱ͢Δ༨ྨʹ͓͚ΔٯݩʯΛܭࢉ͢ΔΞϧΰ ϦζϜΛཧղ͢Δ 7 / 33
ࠓ·Ͱͷ pow ؔ Python 3.7 ·Ͱͷ pow ؔΛ෮श͠Α͏ 8 /
33
ͷႈ ఆٛ (ͷႈ) b ͱࣗવ n ʹରͯ͠ɺႈ bn Λ
bn ≜ n ݸ z }| { b ˆ b ˆ ´ ´ ´ ˆ b ͱఆٛ͢Δɻb Λఈɺn ΛࢦͱݺͿɻ ͷႈͷྫ 232 = 4294967296: 9 / 33
ͷႈ Python ʹ͓͚Δႈ ΈࠐΈؔ pow ·ͨ**ԋࢉࢠΛ͏ɻ ႈͷ࣮ߦྫ >>> pow(2, 32)
4294967296 >>> 2 ** 32 4294967296 10 / 33
ႈ༨ ఆٛ (ႈ༨) ࣗવͷఈ b ͱࣗવ n; m ʹରͯ͠ɺ bn
mod m Λ m Λ๏ͱ͢Δႈ༨ͱఆٛ͢Δɻ ႈ༨ͷྫ 232 mod 65535 = 1: 11 / 33
ႈ༨ Python ʹ͓͚Δႈ༨ › ΈࠐΈؔ pow ͰޮతʹܭࢉͰ͖Δɻ › **ԋࢉࢠ͓Αͼ%ԋࢉࢠͰܭࢉՄೳ͕ͩޮ͕ѱ͍ɻ ›
Python 1.5 ͔Βར༻Մೳʢint ܕͷൣғͳͲͷ੍ݶ ͋ͬͨʣ ɻ ႈ༨ͷ࣮ߦྫ >>> pow(2, 262144, 65535) 1 >>> (2 ** 262144) % 65535 1 12 / 33
ႈ༨ ͲΕ͚ͩޮత͔ >>> import timeit >>> timeit.timeit("pow(2, 262144, 65535)", number=1000)
0.0007324999999999693 >>> timeit.timeit("(2 ** 262144) % 65535", number=1000) 0.868453 ݁ՌΛ࣮ߦճͰׂΕฏۉ͕࣌ؒΘ͔Δɻ 13 / 33
ႈ༨ ԋࢉࢠͱؔʹ͓͚Δܭࢉ࣌ؒͷൺֱ 14 / 33
͜Ε͔Βͷ pow ؔ Python 3.8 ͔Βͷ pow ؔΛཧղ͢ΔͨΊʹ 15 /
33
ͷ߹ಉ ఆٛ (ͷ߹ಉ) a ͕ m Λ๏ͱͯ͠ b ͱ߹ಉͰ͋Δͱ
m ͕ a ` b ΛׂΓΔ ͜ͱΛ͍͍ɺ a ” b (mod m) ͱද͢ɻ ͷ߹ಉͷྫ 47 ” 35 (mod 6) 47 ` 35 = 12 6 ͰׂΓΕΔɻ 16 / 33
༨ྨ ఆٛ (༨ྨ) ू߹ Z ͱ m Λ๏ͱ͢Δ߹ಉؔʹΑΔಉྨ͔ΒͳΔू ߹Λ༨ྨͱݺͼɺZm ͱද͢ɻ
༨ྨͷΠϝʔδ Λ m Ͱׂͬͨ༨Ͱྨͯ͠ɺ༨͕ಉ͡ಉ༷͡ͳͷͱ ͯ͠ߟ͑Δɻͭ·ΓɺΛ 0; 1; : : : ; m ` 1 ͷ͍ͣΕ͔ʹྨͯ͠ ී௨ͷͷΘΓʹ 0; 1; : : : ; m ` 1 ͚ͩͷੈքΛߟ͍͑ͯΔɻ m = 2 ͳΒɺΛۮ͔حͷ 2 ͭʹྨ͢Δ͜ͱͱಉ͡ɻ 17 / 33
༨ྨʹ͓͚Δ๏ٯݩ ఆٛ (Zm ʹ͓͚Δ๏ٯݩ) a; b ͱࣗવ m ʹରͯ͠ɺ
ab ” 1 (mod m) ͱͳΔͱ͖ɺb Λ a ͷ๏ٯݩͱݺͼɺa`1 ͱද͢ɻ ༨ྨʹ͓͚Δ๏ٯݩͷྫ 38 ˜ 23 ” 1 (mod 97) 38 ͷ 97 Λ๏ͱ͢Δ๏ٯݩ 23 18 / 33
༨ྨʹ͓͚Δ๏ٯݩ Python ʹ͓͚Δ༨ྨʹ͓͚Δ๏ٯݩ › ΈࠐΈؔ pow ͷୈ 2 Ҿʹ `1
ΛͤܭࢉՄೳ › ͜Ε͕ Python 3.8 ͷ৽ػೳ ༨ྨʹ͓͚Δ๏ٯݩͷ࣮ߦྫ >>> pow(38, -1, 97) 23 >>> (38 * 23) % 97 == 1 True 19 / 33
༨ྨʹ͓͚Δ๏ٯݩ ඞͣ͠๏ٯݩ͕ଘࡏ͢ΔͱݶΒͳ͍ >>> pow(2, -1, 6) Traceback (most recent call
last): File "<stdin>", line 1, in <module> ValueError: base is not invertible for the given modulus ༩͑ΒΕͨ๏ʹରͯ͠ఈ͕๏ٯݩΛ࣋ͨͳ͍ʢԿނʁʣ ɻ 20 / 33
๏ٯݩΛٻΊͯ ๏ٯݩͷҙຯ a ʹରͯ͠ɺm Λ๏ͱ͢Δ߹ಉํఔࣜ ax ” 1 (mod
m) Λղ͘͜ͱʹଞͳΒͳ͍ɻ 21 / 33
߹ಉͷఆٛʹཱͪฦΔ ๏ٯݩͷҙຯ ax ” 1 (mod m) Λมܗ͢Δͱɺ1 ࣍ෆఆํఔࣜ ax
` my = 1 ͕ղ x; y Λ࣋ͭ͜ͱʹଞͳΒͳ͍ɻ 22 / 33
߹ಉํఔࣜͷղ ఆཧ a; c ʹରͯ͠ɺm Λ๏ͱ͢Δ߹ಉํఔࣜ ax ” c
(mod m) ɺc ͕ gcd(a; m) ͰׂΓΕΔͱ͖ͷΈɺͪΐ͏Ͳ gcd(a; m) ݸͷޓ͍ʹ߹ಉͰͳ͍ղΛ࣋ͭɻͨͩ͠ɺgcd(a; m) a ͱ m ͷ ࠷େެͰ͋Δɻ ূ໌ɺదͳॳͷڭՊॻΛࢀর͍ͯͩ͘͠͞ɻ 23 / 33
ࠓճͷέʔε ܥ a; ʹରͯ͠ɺm Λ๏ͱ͢Δ߹ಉํఔࣜ ax ” 1 (mod
m) ɺgcd(a; m) = 1 ͷ߹ͷΈɺ1 ݸͷޓ͍ʹ߹ಉͰͳ͍ղΛ ࣋ͭɻ ๏ٯݩ͕ଘࡏ͢Δ͔Ͳ͏ֶ͔తͳཪ͚͕͋Δɻ 24 / 33
༨ྨʹ͓͚Δ๏ٯݩ ๏ٯݩ͕ଘࡏ͢Δέʔε >>> import math >>> math.gcd(38, 97) 1 >>>
pow(38, -1, 97) 23 gcd(38; 97) = 1 ͳͷͰɺ97 Λ๏ͱ͢Δ 38 ͷ๏ٯݩ͕ଘࡏ͢Δɻ 25 / 33
༨ྨʹ͓͚Δ๏ٯݩ ๏ٯݩ͕ଘࡏ͠ͳ͍έʔε >>> import math >>> math.gcd(2, 6) 2 >>>
pow(2, -1, 6) Traceback (most recent call last): File "<stdin>", line 1, in <module> ValueError: base is not invertible for the given modulus gcd(2; 6) 6= 1 ͳͷͰɺ6 Λ๏ͱ͢Δ 2 ͷ๏ٯݩଘࡏ͠ͳ͍ɻ 26 / 33
༨ྨʹ͓͚Δ๏ٯݩ ఆཧ a ʹରͯ͠ɺm Λ๏ͱ͢Δ๏ٯݩ͕ଘࡏ͢ΔͨΊͷඞཁे ݅ gcd(a; m) =
1 Ͱ͋Δɻ ެࣜυΩϡϝϯτʹʮIf mod is present and exp is negative, base must be relatively prime to mod.ʯͱ͋Δɻ 27 / 33
Euclid ͷޓআ๏ ఆཧ a; b Λ a – b Ͱ͋Δɺr
Λ a Λ b Ͱׂͬͨ༨Γͱ͢Δɻ͜ͷ ͱ͖ɺ gcd(a; b) = gcd(b; r) ͕Γཱͭɻ 28 / 33
Euclid ͷޓআ๏ Euclid ͷޓআ๏ͱ 1 ࣍ෆఆํఔࣜ a Λ b Ͱׂͬͨͱ༨ΛͦΕͧΕ
q; r ͱ͢Δɻ1 ࣍ෆఆํఔࣜ ax + by = 1 ʹ a = qb + r Λೖ͢Δͱɺ (qb + r)x + by = 1 )b(qx + y) + rx = 1 ͱͳΔɻ ͭ·Γɺax + by = 1 ͔Β bs + rt = 1 ͱ͢Δ͜ͱ͕Ͱ͖Δɻ x = t; y = s ` qt ͱ͍͏ؔɻ 29 / 33
pow ͷத longobject.c ͷίϝϯτʹ͋Δ࣮ʢҰ෦վมʣ def invmod(a, m): x, y =
1, 0 while m: q, r = divmod(a, m) a, m = m, r x, y = y, x - q * y if a == 1: return x raise ValueError("Not invertible") 30 / 33
༨ྨʹ͓͚Δ๏ٯݩ ΞϧΰϦζϜ a ͱ m ͷ࠷େެΛܭࢉ͢ΔաఔͰ๏ٯݩΛܭࢉ͢Δ͜ͱ͕Ͱ ͖Δɻ Remark a
ʹରͯ͠ɺm Λ๏ͱ͢Δ๏ٯݩΛܭࢉ͢ΔΞϧΰϦζϜ֦ ு Euclid ͷޓআ๏ͱݺΕΔɻ 31 / 33
ԿނՃ͞Εͨͷ͔ bpo-36027 ʹॻ͔Ε͍ͯΔཧ༝ Here is another number theory basic that
I’ve needed every now... ͷجຊతͳ͔ؔͩΒඞཁͩΑͶʂ 32 / 33
·ͱΊ ·ͱΊ › pow ؔͷႈΛฦؔ͢Ͱ͋Δɻ › ႈ༨Λܭࢉ͢Δ߹ඞͣ pow ؔΛ͏ɻ ›
Python 3.8 Ͱ༨ྨͷ๏ٯݩ͕ܭࢉͰ͖ΔΑ͏ʹͳͬͨɻ › ๏ٯݩ͕ܭࢉͰ͖ΔΈ Euclid ͷޓআ๏ʹ͋Δɻ PyCon JP 2021 Discord ΑΖ͘͠ › #hayao-suzuki-ΈࠐΈؔ pow ͷΒΕ͟ΔਐԽ › #pyconjp_3 ʢ1 17:30ʙ18:15ʣ 33 / 33