Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
"S分析" 最強説 : Presentation in Marunouchi Analytic...
Search
Hikaru Kashida
May 31, 2017
Technology
10
4k
"S分析" 最強説 : Presentation in Marunouchi Analytics | Jun 2016
2016. Jun 丸の内アナリティクスイベントに登壇したときの資料
これまで色んな分析をしてきた中で、一番有用性が高いと思った「S分析」についてのプレゼンです
Hikaru Kashida
May 31, 2017
Tweet
Share
More Decks by Hikaru Kashida
See All by Hikaru Kashida
データをどう使うか?ーメルカリでの学び, デジタル庁の挑戦
hik0107
13
2.9k
いま、データに必要な解像度
hik0107
54
22k
Growth Grand Theory - Dos and Donts
hik0107
23
9k
Data, Design and Government
hik0107
53
37k
戦略と実行をつなぐデータ
hik0107
53
26k
FREE AGENDA #65 施策を通じて得た抽象的な学び
hik0107
14
4.9k
noteの躍進を支えた”定性と定量の甘い関係”
hik0107
14
37k
なんでデータアナリストやってるの
hik0107
16
6.9k
Simple Data Analytics Leads impact
hik0107
146
170k
Other Decks in Technology
See All in Technology
データエンジニアがこの先生きのこるには...?
10xinc
0
430
いまさら聞けない ABテスト入門
skmr2348
1
180
非エンジニアのあなたもできる&もうやってる!コンテキストエンジニアリング
findy_eventslides
3
880
PythonとLLMで挑む、 4コマ漫画の構造化データ化
esuji5
1
130
インサイト情報からどこまで自動化できるか試してみた
takas0522
0
130
成長自己責任時代のあるきかた/How to navigate the era of personal responsibility for growth
kwappa
3
230
AI時代だからこそ考える、僕らが本当につくりたいスクラムチーム / A Scrum Team we really want to create in this AI era
takaking22
6
2.8k
KAGのLT会 #8 - 東京リージョンでGAしたAmazon Q in QuickSightを使って、報告用の資料を作ってみた
0air
0
190
組織観点からIAM Identity CenterとIAMの設計を考える
nrinetcom
PRO
1
150
AI Agentと MCP Serverで実現する iOSアプリの 自動テスト作成の効率化
spiderplus_cb
0
420
Azure Well-Architected Framework入門
tomokusaba
0
200
#普通の文系サラリーマンチャレンジ 自分でアプリ開発と電子工作を続けたら人生が変わった
tatsuya1970
0
910
Featured
See All Featured
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
The Straight Up "How To Draw Better" Workshop
denniskardys
237
140k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
GraphQLとの向き合い方2022年版
quramy
49
14k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Being A Developer After 40
akosma
91
590k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.1k
Testing 201, or: Great Expectations
jmmastey
45
7.7k
Building an army of robots
kneath
306
46k
YesSQL, Process and Tooling at Scale
rocio
173
14k
Git: the NoSQL Database
bkeepers
PRO
431
66k
Transcript
株式会社メルカリ Hikaru Kashida (@hik0107) 業界横断で使える分析 「S分析」最強説
メルカリとは v オールジャンルのフリマアプリ v ⽇⽶通算 4000万 DL(⽇本:3000万 / US:1000万)
⾃⼰紹介 v 外資戦略コンサル ➔ 友⼈と起業 ➔ 分析コンサル ➔ メルカリ v
今はデータサイエンティスト v ゆるいPython使い v Qiitaで活動中 v 実務で使える機械学習を勉強中
業界横断で使える分析? ⇢ S分析 仕事変われど使い続けてきた分析手法
業界横断で使える分析? ⇢ 散布図 仕事変われど使い続けてきた分析手法
なぜ散布図か? A. 比較 C. 変動 B. 関係性 D. 5次元
A.⽐較といえば 散布図 v 戦略コンサル時代に、ビジネス⽐較で多様 ⇢ 「2~3 の軸」で 「複数の対象」を 「同時に⽐較可能」 総資本額
JPY 資本効率 % A社 B社 C社 D社 スケール追求 経営 アセットライト 経営 E社 会社のビジネスモデルの比較
B.関係性といえば 散布図 v 分析コンサル時代に、モデルづくりの際に多様 ⇢ 特に「予測のずれ」について話す時などの時に便利 観測値(正解データ) 予測値 日次注文数の予測のズレ
B.関係性といえば 散布図 観測値(正解データ) 日曜日 土曜日 予測値 v 分析コンサル時代に、モデルづくりの際に多様 ⇢ 特に「予測のずれ」について話す時などの時に便利
日次注文数の予測のズレ
C.変動といえば 散布図 出品商品数 [#] E 売れる確率 [%] C D B
A 商品カテゴリの需給バランス v メルカリでやってる分析 ⇢ 2軸上での変化を表すのに⾮常に優れる 通常時 スナップショット
C.変動といえば 散布図 出品商品数 [#] E 売れる確率 [%] C D B
A 商品カテゴリの需給バランス v メルカリでやってる分析 ⇢ 2軸上での変化を表すのに⾮常に優れる 通常時 増加時 変動
C.変動といえば 散布図 出品商品数 [#] 供給過多 カテゴリ E 売れる確率 [%] C
D B A 商品カテゴリの需給バランス 有望 カテゴリ 伸び悩み カテゴリ v メルカリでやってる分析 ⇢ 2軸上での変化を表すのに⾮常に優れる 通常時 増加時
散布図はビジネスに適している v 情報量が多い割に、誰でも⾒やすい v ビジネスは⼤体2要素(以上) のトレードオフ
D.5次元といえば 散布図 v 定量1. X軸 v 定量2. Y軸 v 定量3.
⼤きさ v カテゴリ1. ⾊ v カテゴリ2. ラベル 2016 2017
それって⾒づらくない?
決算資料会の神コロプラさん
散布図は、最⾼だ
無⼈島に何か⼀つ持って⾏くとしたら?
無⼈島に何か⼀つ持って⾏くとしたら? 迷わず「散布図」と⾔える⼈を増やしたい
Enjoy!
We Are Hiring!