Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
"S分析" 最強説 : Presentation in Marunouchi Analytic...
Search
Hikaru Kashida
May 31, 2017
Technology
10
4k
"S分析" 最強説 : Presentation in Marunouchi Analytics | Jun 2016
2016. Jun 丸の内アナリティクスイベントに登壇したときの資料
これまで色んな分析をしてきた中で、一番有用性が高いと思った「S分析」についてのプレゼンです
Hikaru Kashida
May 31, 2017
Tweet
Share
More Decks by Hikaru Kashida
See All by Hikaru Kashida
いま、データに必要な解像度
hik0107
51
21k
Growth Grand Theory - Dos and Donts
hik0107
21
8.8k
Data, Design and Government
hik0107
53
37k
戦略と実行をつなぐデータ
hik0107
51
26k
FREE AGENDA #65 施策を通じて得た抽象的な学び
hik0107
14
4.8k
noteの躍進を支えた”定性と定量の甘い関係”
hik0107
14
36k
なんでデータアナリストやってるの
hik0107
16
6.9k
Simple Data Analytics Leads impact
hik0107
145
170k
Introduction of Mercari BI team and Case Studies of Analytics for Service in US
hik0107
10
70k
Other Decks in Technology
See All in Technology
公開初日に Gemini CLI を試した話や FFmpeg と組み合わせてみた話など / Gemini CLI 初学者勉強会(#AI道場)
you
PRO
0
1.3k
対話型音声AIアプリケーションの信頼性向上の取り組み
ivry_presentationmaterials
3
1.1k
SREのためのeBPF活用ステップアップガイド
egmc
2
1.3k
【あのMCPって、どんな処理してるの?】 AWS CDKでの開発で便利なAWS MCP Servers特集
yoshimi0227
6
950
shake-upを科学する
rsakata
7
1k
[SRE NEXT 2025] すみずみまで暖かく照らすあなたの太陽でありたい
carnappopper
2
470
サイバーエージェントグループのSRE10年の歩みとAI時代の生存戦略
shotatsuge
4
1k
Bill One 開発エンジニア 紹介資料
sansan33
PRO
4
13k
伴走から自律へ: 形式知へと導くSREイネーブリングによる プロダクトチームの信頼性オーナーシップ向上 / SRE NEXT 2025
visional_engineering_and_design
3
460
モニタリング統一への道のり - 分散モニタリングツール統合のためのオブザーバビリティプロジェクト
niftycorp
PRO
1
520
推し書籍📚 / Books and a QA Engineer
ak1210
0
140
United™️ Airlines®️ Customer®️ USA Contact Numbers: Complete 2025 Support Guide
flyunitedguide
0
800
Featured
See All Featured
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
47
9.6k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Typedesign – Prime Four
hannesfritz
42
2.7k
Adopting Sorbet at Scale
ufuk
77
9.5k
Speed Design
sergeychernyshev
32
1k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Building a Modern Day E-commerce SEO Strategy
aleyda
42
7.4k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Building Adaptive Systems
keathley
43
2.7k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
GitHub's CSS Performance
jonrohan
1031
460k
Transcript
株式会社メルカリ Hikaru Kashida (@hik0107) 業界横断で使える分析 「S分析」最強説
メルカリとは v オールジャンルのフリマアプリ v ⽇⽶通算 4000万 DL(⽇本:3000万 / US:1000万)
⾃⼰紹介 v 外資戦略コンサル ➔ 友⼈と起業 ➔ 分析コンサル ➔ メルカリ v
今はデータサイエンティスト v ゆるいPython使い v Qiitaで活動中 v 実務で使える機械学習を勉強中
業界横断で使える分析? ⇢ S分析 仕事変われど使い続けてきた分析手法
業界横断で使える分析? ⇢ 散布図 仕事変われど使い続けてきた分析手法
なぜ散布図か? A. 比較 C. 変動 B. 関係性 D. 5次元
A.⽐較といえば 散布図 v 戦略コンサル時代に、ビジネス⽐較で多様 ⇢ 「2~3 の軸」で 「複数の対象」を 「同時に⽐較可能」 総資本額
JPY 資本効率 % A社 B社 C社 D社 スケール追求 経営 アセットライト 経営 E社 会社のビジネスモデルの比較
B.関係性といえば 散布図 v 分析コンサル時代に、モデルづくりの際に多様 ⇢ 特に「予測のずれ」について話す時などの時に便利 観測値(正解データ) 予測値 日次注文数の予測のズレ
B.関係性といえば 散布図 観測値(正解データ) 日曜日 土曜日 予測値 v 分析コンサル時代に、モデルづくりの際に多様 ⇢ 特に「予測のずれ」について話す時などの時に便利
日次注文数の予測のズレ
C.変動といえば 散布図 出品商品数 [#] E 売れる確率 [%] C D B
A 商品カテゴリの需給バランス v メルカリでやってる分析 ⇢ 2軸上での変化を表すのに⾮常に優れる 通常時 スナップショット
C.変動といえば 散布図 出品商品数 [#] E 売れる確率 [%] C D B
A 商品カテゴリの需給バランス v メルカリでやってる分析 ⇢ 2軸上での変化を表すのに⾮常に優れる 通常時 増加時 変動
C.変動といえば 散布図 出品商品数 [#] 供給過多 カテゴリ E 売れる確率 [%] C
D B A 商品カテゴリの需給バランス 有望 カテゴリ 伸び悩み カテゴリ v メルカリでやってる分析 ⇢ 2軸上での変化を表すのに⾮常に優れる 通常時 増加時
散布図はビジネスに適している v 情報量が多い割に、誰でも⾒やすい v ビジネスは⼤体2要素(以上) のトレードオフ
D.5次元といえば 散布図 v 定量1. X軸 v 定量2. Y軸 v 定量3.
⼤きさ v カテゴリ1. ⾊ v カテゴリ2. ラベル 2016 2017
それって⾒づらくない?
決算資料会の神コロプラさん
散布図は、最⾼だ
無⼈島に何か⼀つ持って⾏くとしたら?
無⼈島に何か⼀つ持って⾏くとしたら? 迷わず「散布図」と⾔える⼈を増やしたい
Enjoy!
We Are Hiring!