Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Factor Oracle for Machine Improvisation

Factor Oracle for Machine Improvisation

E49d1bfa9f9443686cbb9b4aaf6298af?s=128

Jaime Arias Almeida

September 19, 2016
Tweet

More Decks by Jaime Arias Almeida

Other Decks in Research

Transcript

  1. Factor Oracle for Machine Improvisation Jaime Arias Université de Bordeaux,

    LaBRI, UMR 5800 Inria - Bordeaux Sud-Ouest Septembre 2016
  2. Preliminaries

  3. Preliminaries Word A word s is a finite sequence s

    = s1 s2 ... sm of length |s| = m on a finite alphabet Σ.  # # +  # + /  # + s = Factor A word x ∈ Σ∗ is a factor of s if and only if s can be written s = uxv with u, v ∈ Σ∗. Given integers i, j where 1 ≤ i ≤ j ≤ m, we denote a factor of s as s[i ... j] = si si+1 ... sj .  # # +  # + /  # + s = s[3, 5] Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 1/10 1/10
  4. Preliminaries Prefix A factor x of s is a prefix

    of s if s = xu with u ∈ Σ∗. The ith prefix of s, denoted prefs (i), is the prefix s[1 ... i].  # # +  # + /  # + s = prefs (4) Suffix A factor x of s is a suffix of s if s = ux with u ∈ Σ∗. The ith suffix of s, denoted suffs (i), is the suffix s[i ... m].  # # +  # + /  # + s = suffs (6) Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 2/10 2/10
  5. Preliminaries Longest Repeated Suffix (LRS) A factor x of s

    is the longest repeated suffix of s if x is a suffix of s and |x| is maximal.  # # +  # + /  # + s = lrs(s) Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 3/10 3/10
  6. Factor Oracle

  7. Factor Oracle Overview 0 1 a 0 2 b 0

    3 b 1 4 c 0 5 a 1 6 b 2 7 c 2 8 d 0 9 a 1 10 b 2 11 c 3 b c c d d Forward Links Suffix Links Factor Oracle The factor oracle of a word s of length m is a deterministic finite automaton (Q, q0 , F, δ) where Q = {0, 1, ... , m} is the set of states, q0 = 0 is the starting state, F = Q is the set of terminal states and δ is the transition function. Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 4/10 4/10
  8. Factor Oracle Overview 0 1 a 0 2 b 0

    3 b 1 4 c 0 5 a 1 6 b 2 7 c 2 8 d 0 9 a 1 10 b 2 11 c 3 b c c d d Forward Links Suffix Links Suffix Link The suffix link of a state i of the factor oracle of a word s, is equal to the state in which the longest repeated suffix (lrs) of s[1 ... i] is recognized. Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 4/10 4/10
  9. Factor Oracle Overview 0 1 a 0 2 b 0

    3 b 1 4 c 0 5 a 1 6 b 2 7 c 2 8 d 0 9 a 1 10 b 2 11 c 3 b c c d d Suffix Links • s = abbcabcdabc Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 5/10 5/10
  10. Factor Oracle Overview 0 1 a 0 2 b 0

    3 b 1 4 c 0 5 a 1 6 b 2 7 c 2 8 d 0 9 a 1 10 b 2 11 c 3 b c c d d Suffix Links • s = abbcabcdabc • lrs(s) = abc Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 5/10 5/10
  11. Factor Oracle Overview 0 1 a 0 2 b 0

    3 b 1 4 c 0 5 a 1 6 b 2 7 c 2 8 d 0 9 a 1 10 b 2 11 c 3 b c c d d Suffix Links • s = abbcabcdabc • lrs(s) = abc • S(11) = 7 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 5/10 5/10
  12. Factor Oracle Algorithm - Construction Algorithm 1 Construction of a

    Factor Oracle 1: function FactorOracle(p = p1p2 ... pm ) 2: Create a new oracle P with an initial state 0 3: SP (0) ← −1 4: for i ← 1, m do 5: Oracle(p = p1p2 ... pi ) ← AddLetter(Oracle(p = p1p2 ... pi−1), pi ) 6: end for 7: return Oracle(p = p1p2 ... pm) 8: end function Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 6/10 6/10
  13. Factor Oracle Algorithm - Construction Algorithm 1 Construction of a

    Factor Oracle 1: function FactorOracle(p = p1p2 ... pm ) 2: Create a new oracle P with an initial state 0 3: SP (0) ← −1 4: for i ← 1, m do 5: Oracle(p = p1p2 ... pi ) ← AddLetter(Oracle(p = p1p2 ... pi−1), pi ) 6: end for 7: return Oracle(p = p1p2 ... pm) 8: end function  # # +  # + /  # + p = Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 6/10 6/10
  14. Factor Oracle Algorithm - Construction Algorithm 1 Construction of a

    Factor Oracle 1: function FactorOracle(p = p1p2 ... pm ) 2: Create a new oracle P with an initial state 0 3: SP (0) ← −1 4: for i ← 1, m do 5: Oracle(p = p1p2 ... pi ) ← AddLetter(Oracle(p = p1p2 ... pi−1), pi ) 6: end for 7: return Oracle(p = p1p2 ... pm) 8: end function  # # +  # + /  # + p = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 6/10 6/10
  15. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  16. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 0 m = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  17. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  0 m = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  18. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  0 m = 0 π1 = 0 k = −1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  19. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  0 m = 0 π1 = 0 k = −1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  20. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: Spσ ← 0 5: lrspσ ← 0 6: else 7: ... 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  0 m = 0 π1 = 0 k = −1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  21. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: Spσ ← 0 5: lrspσ ← 0 6: else 7: ... 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  0 m = 0 π1 = 0 k = −1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  22. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: Spσ ← 0 5: lrspσ ← 0 6: else 7: ... 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  0 0 m = 0 π1 = 0 k = −1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  23. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  0 0 m = 1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  24. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 0 0 m = 1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  25. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 0 0 m = 1 π1 = 1 k = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  26. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # 0 0 m = 1 π1 = 1 k = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  27. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # b 0 0 m = 1 π1 = 1 k = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  28. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # b 0 0 m = 1 π1 = 0 k = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  29. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # b 0 0 m = 1 π1 = 0 k = −1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  30. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: Spσ ← 0 5: lrspσ ← 0 6: else 7: ... 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # b 0 0 m = 1 π1 = 0 k = −1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  31. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: Spσ ← 0 5: lrspσ ← 0 6: else 7: ... 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # b 0 0 m = 1 π1 = 0 k = −1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  32. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: Spσ ← 0 5: lrspσ ← 0 6: else 7: ... 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # b 0 0 0 m = 1 π1 = 0 k = −1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  33. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # b 0 0 0 m = 2 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  34. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # b 0 0 0 m = 2 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  35. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # b 0 0 0 m = 2 π1 = 2 k = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  36. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # 3 # b 0 0 0 m = 2 π1 = 2 k = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  37. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: ... 5: else 6: Spσ ← state that leads the transition from k by σ 7: lrspσ ← LengthCommonSuffix(π1, S(m + 1) − 1) + 1 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # b 0 0 0 m = 2 π1 = 2 k = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  38. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: ... 5: else 6: Spσ ← state that leads the transition from k by σ 7: lrspσ ← LengthCommonSuffix(π1, S(m + 1) − 1) + 1 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # b 0 0 0 m = 2 π1 = 2 k = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  39. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: ... 5: else 6: Spσ ← state that leads the transition from k by σ 7: lrspσ ← LengthCommonSuffix(π1, S(m + 1) − 1) + 1 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # b 0 0 0 1 m = 2 π1 = 2 k = 0 lcs(2, 1) = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  40. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # b 0 0 0 1 m = 3 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  41. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + b 0 0 0 1 m = 3 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  42. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + b 0 0 0 1 m = 3 π1 = 3 k = 2 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  43. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + b 0 0 0 1 m = 3 π1 = 3 k = 2 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  44. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + b c 0 0 0 1 m = 3 π1 = 3 k = 2 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  45. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + b c 0 0 0 1 m = 3 π1 = 2 k = 2 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  46. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + b c 0 0 0 1 m = 3 π1 = 2 k = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  47. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + b c c 0 0 0 1 m = 3 π1 = 2 k = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  48. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + b c c 0 0 0 1 m = 3 π1 = 0 k = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  49. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + b c c 0 0 0 1 m = 3 π1 = 0 k = −1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  50. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: Spσ ← 0 5: lrspσ ← 0 6: else 7: ... 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + b c c 0 0 0 1 m = 3 π1 = 0 k = −1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  51. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: Spσ ← 0 5: lrspσ ← 0 6: else 7: ... 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + b c c 0 0 0 1 m = 3 π1 = 0 k = −1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  52. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: Spσ ← 0 5: lrspσ ← 0 6: else 7: ... 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + b c c 0 0 0 1 0 m = 3 π1 = 0 k = −1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  53. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + b c c 0 0 0 1 0 m = 4 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  54. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  b c c 0 0 0 1 0 m = 4 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  55. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  b c c 0 0 0 1 0 m = 4 π1 = 4 k = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  56. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  b c c 0 0 0 1 0 m = 4 π1 = 4 k = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  57. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: ... 5: else 6: Spσ ← state that leads the transition from k by σ 7: lrspσ ← LengthCommonSuffix(π1, S(m + 1) − 1) + 1 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  b c c 0 0 0 1 0 m = 4 π1 = 4 k = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  58. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: ... 5: else 6: Spσ ← state that leads the transition from k by σ 7: lrspσ ← LengthCommonSuffix(π1, S(m + 1) − 1) + 1 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  b c c 0 0 0 1 0 m = 4 π1 = 4 k = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  59. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: ... 5: else 6: Spσ ← state that leads the transition from k by σ 7: lrspσ ← LengthCommonSuffix(π1, S(m + 1) − 1) + 1 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  b c c 0 0 0 1 0 1 m = 4 π1 = 4 k = 0 lcs(4, 0) = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  60. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  b c c 0 0 0 1 0 1 m = 5 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  61. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # b c c 0 0 0 1 0 1 m = 5 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  62. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # b c c 0 0 0 1 0 1 m = 5 π1 = 5 k = 1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  63. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # b c c 0 0 0 1 0 1 m = 5 π1 = 5 k = 1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  64. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: ... 5: else 6: Spσ ← state that leads the transition from k by σ 7: lrspσ ← LengthCommonSuffix(π1, S(m + 1) − 1) + 1 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # b c c 0 0 0 1 0 1 m = 5 π1 = 5 k = 1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  65. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: ... 5: else 6: Spσ ← state that leads the transition from k by σ 7: lrspσ ← LengthCommonSuffix(π1, S(m + 1) − 1) + 1 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # b c c 0 0 0 1 0 1 m = 5 π1 = 5 k = 1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  66. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: ... 5: else 6: Spσ ← state that leads the transition from k by σ 7: lrspσ ← LengthCommonSuffix(π1, S(m + 1) − 1) + 1 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # b c c 0 0 0 1 0 1 2 m = 5 π1 = 5 k = 1 lcs(5, 1) = 1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  67. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # b c c 0 0 0 1 0 1 2 m = 6 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  68. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + b c c 0 0 0 1 0 1 2 m = 6 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  69. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + b c c 0 0 0 1 0 1 2 m = 6 π1 = 6 k = 2 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  70. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + b c c 0 0 0 1 0 1 2 m = 6 π1 = 6 k = 2 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  71. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: ... 5: else 6: Spσ ← state that leads the transition from k by σ 7: lrspσ ← LengthCommonSuffix(π1, S(m + 1) − 1) + 1 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + b c c 0 0 0 1 0 1 2 m = 6 π1 = 6 k = 2 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  72. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: ... 5: else 6: Spσ ← state that leads the transition from k by σ 7: lrspσ ← LengthCommonSuffix(π1, S(m + 1) − 1) + 1 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + b c c 0 0 0 1 0 1 2 m = 6 π1 = 6 k = 2 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  73. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: ... 5: else 6: Spσ ← state that leads the transition from k by σ 7: lrspσ ← LengthCommonSuffix(π1, S(m + 1) − 1) + 1 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + b c c 0 0 0 1 0 1 2 2 m = 6 π1 = 6 k = 2 lcs(6, 3) = 1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  74. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + b c c 0 0 0 1 0 1 2 2 m = 7 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  75. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / b c c 0 0 0 1 0 1 2 2 m = 7 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  76. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / b c c 0 0 0 1 0 1 2 2 m = 7 π1 = 7 k = 4 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  77. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / b c c 0 0 0 1 0 1 2 2 m = 7 π1 = 7 k = 4 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  78. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / b c c d 0 0 0 1 0 1 2 2 m = 7 π1 = 7 k = 4 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  79. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / b c c d 0 0 0 1 0 1 2 2 m = 7 π1 = 4 k = 4 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  80. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / b c c d 0 0 0 1 0 1 2 2 m = 7 π1 = 4 k = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  81. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / b c c d d 0 0 0 1 0 1 2 2 m = 7 π1 = 4 k = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  82. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / b c c d d 0 0 0 1 0 1 2 2 m = 7 π1 = 0 k = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  83. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / b c c d d 0 0 0 1 0 1 2 2 m = 7 π1 = 0 k = −1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  84. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: Spσ ← 0 5: lrspσ ← 0 6: else 7: ... 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / b c c d d 0 0 0 1 0 1 2 2 m = 7 π1 = 0 k = −1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  85. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: Spσ ← 0 5: lrspσ ← 0 6: else 7: ... 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / b c c d d 0 0 0 1 0 1 2 2 m = 7 π1 = 0 k = −1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  86. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: Spσ ← 0 5: lrspσ ← 0 6: else 7: ... 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / b c c d d 0 0 0 1 0 1 2 2 0 m = 7 π1 = 0 k = −1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  87. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / b c c d d 0 0 0 1 0 1 2 2 0 m = 8 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  88. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  b c c d d 0 0 0 1 0 1 2 2 0 m = 8 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  89. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  b c c d d 0 0 0 1 0 1 2 2 0 m = 8 π1 = 8 k = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  90. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  b c c d d 0 0 0 1 0 1 2 2 0 m = 8 π1 = 8 k = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  91. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: ... 5: else 6: Spσ ← state that leads the transition from k by σ 7: lrspσ ← LengthCommonSuffix(π1, S(m + 1) − 1) + 1 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  b c c d d 0 0 0 1 0 1 2 2 0 m = 8 π1 = 8 k = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  92. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: ... 5: else 6: Spσ ← state that leads the transition from k by σ 7: lrspσ ← LengthCommonSuffix(π1, S(m + 1) − 1) + 1 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  b c c d d 0 0 0 1 0 1 2 2 0 m = 8 π1 = 8 k = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  93. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: ... 5: else 6: Spσ ← state that leads the transition from k by σ 7: lrspσ ← LengthCommonSuffix(π1, S(m + 1) − 1) + 1 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  b c c d d 0 0 0 1 0 1 2 2 0 1 m = 8 π1 = 8 k = 0 lcs(8, 0) = 0 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  94. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  b c c d d 0 0 0 1 0 1 2 2 0 1 m = 9 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  95. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # b c c d d 0 0 0 1 0 1 2 2 0 1 m = 9 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  96. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # b c c d d 0 0 0 1 0 1 2 2 0 1 m = 9 π1 = 9 k = 1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  97. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # b c c d d 0 0 0 1 0 1 2 2 0 1 m = 9 π1 = 9 k = 1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  98. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: ... 5: else 6: Spσ ← state that leads the transition from k by σ 7: lrspσ ← LengthCommonSuffix(π1, S(m + 1) − 1) + 1 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # b c c d d 0 0 0 1 0 1 2 2 0 1 m = 9 π1 = 9 k = 1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  99. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: ... 5: else 6: Spσ ← state that leads the transition from k by σ 7: lrspσ ← LengthCommonSuffix(π1, S(m + 1) − 1) + 1 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # b c c d d 0 0 0 1 0 1 2 2 0 1 m = 9 π1 = 9 k = 1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  100. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: ... 5: else 6: Spσ ← state that leads the transition from k by σ 7: lrspσ ← LengthCommonSuffix(π1, S(m + 1) − 1) + 1 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # b c c d d 0 0 0 1 0 1 2 2 0 1 2 m = 9 π1 = 9 k = 1 lcs(9, 1) = 1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  101. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # b c c d d 0 0 0 1 0 1 2 2 0 1 2 m = 10 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  102. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 m = 10 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  103. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: Create state m + 1 3: Create a new transition from m to m + 1 labeled by σ ◃ δ(m, σ) = m + 1 4: π1 ← m 5: k ← Sp(m) 6: ... 7: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 m = 10 π1 = 10 k = 2 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  104. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: while k > −1 and there is no transition from k by σ do 4: Create a new transition from k to m + 1 by σ ◃ δ(k, σ) = m + 1 5: π1 ← k 6: k ← Sp(k) 7: end while 8: ... 9: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 m = 10 π1 = 10 k = 2 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  105. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: ... 5: else 6: Spσ ← state that leads the transition from k by σ 7: lrspσ ← LengthCommonSuffix(π1, S(m + 1) − 1) + 1 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 m = 10 π1 = 10 k = 2 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  106. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: ... 5: else 6: Spσ ← state that leads the transition from k by σ 7: lrspσ ← LengthCommonSuffix(π1, S(m + 1) − 1) + 1 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 m = 10 π1 = 10 k = 2 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  107. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: ... 5: else 6: Spσ ← state that leads the transition from k by σ 7: lrspσ ← LengthCommonSuffix(π1, S(m + 1) − 1) + 1 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 2 m = 10 π1 = 10 k = 2 lcs(10, 3) = 1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  108. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: if k = −1 then 4: ... 5: else 6: Spσ ← state that leads the transition from k by σ 7: lrspσ ← LengthCommonSuffix(π1, S(m + 1) − 1) + 1 8: end if 9: ... 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 2 m = 10 π1 = 10 k = 2 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  109. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: k ← FindBetter(m + 1, p[m + 1 − lrs(m + 1)]) 4: if k ̸= 0 then 5: lrspσ ← lrs(m + 1) + 1 6: Spσ ← k 7: end if 8: T(Spσ ) ← T(S(m + 1)) ∪ {m + 1} ◃ T(i) = {j | S(j) = i ∧ i < j ≤ m} 9: return Oracle(p = p1p2 ... pmσ) 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 2 m = 10 π1 = 10 k = 2 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  110. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: k ← FindBetter(m + 1, p[m + 1 − lrs(m + 1)]) 4: if k ̸= 0 then 5: lrspσ ← lrs(m + 1) + 1 6: Spσ ← k 7: end if 8: T(Spσ ) ← T(S(m + 1)) ∪ {m + 1} ◃ T(i) = {j | S(j) = i ∧ i < j ≤ m} 9: return Oracle(p = p1p2 ... pmσ) 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 2 m = 10 π1 = 10 k = 7 FindBetter(11, a) = 7 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  111. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: k ← FindBetter(m + 1, p[m + 1 − lrs(m + 1)]) 4: if k ̸= 0 then 5: lrspσ ← lrs(m + 1) + 1 6: Spσ ← k 7: end if 8: T(Spσ ) ← T(S(m + 1)) ∪ {m + 1} ◃ T(i) = {j | S(j) = i ∧ i < j ≤ m} 9: return Oracle(p = p1p2 ... pmσ) 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 3 m = 10 π1 = 10 k = 7 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  112. Factor Oracle Algorithm - Construction Algorithm 2 Incremental update of

    Factor Oracle 1: function AddLetter(Oracle(p = p1, p2 ... pm), σ) 2: ... 3: k ← FindBetter(m + 1, p[m + 1 − lrs(m + 1)]) 4: if k ̸= 0 then 5: lrspσ ← lrs(m + 1) + 1 6: Spσ ← k 7: end if 8: T(Spσ ) ← T(S(m + 1)) ∪ {m + 1} ◃ T(i) = {j | S(j) = i ∧ i < j ≤ m} 9: return Oracle(p = p1p2 ... pmσ) 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 3 m = 10 π1 = 10 k = 7 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 7/10 7/10
  113. Factor Oracle Algorithm - Construction Algorithm 3 Length Common Suffix

    Algorithm 1: function LengthCommonSuffix(π1, π2 ) 2: if S(π1) = π2 then 3: return lrs(π1) 4: else 5: while S(π1) ̸= S(π2) do 6: π2 ← S(π2) 7: end while 8: end if 9: return min(lrs(π1), lrs(π2)) 10: end function Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 8/10 8/10
  114. Factor Oracle Algorithm - Construction Algorithm 3 Length Common Suffix

    Algorithm 1: function LengthCommonSuffix(π1, π2 ) 2: if S(π1) = π2 then 3: return lrs(π1) 4: else 5: while S(π1) ̸= S(π2) do 6: π2 ← S(π2) 7: end while 8: end if 9: return min(lrs(π1), lrs(π2)) 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 2 m = 10 π1 = 10 π2 = 3 lcs(10, 3) = Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 8/10 8/10
  115. Factor Oracle Algorithm - Construction Algorithm 3 Length Common Suffix

    Algorithm 1: function LengthCommonSuffix(π1, π2 ) 2: if S(π1) = π2 then 3: return lrs(π1) 4: else 5: while S(π1) ̸= S(π2) do 6: π2 ← S(π2) 7: end while 8: end if 9: return min(lrs(π1), lrs(π2)) 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 2 m = 10 π1 = 10 π2 = 3 lcs(10, 3) = Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 8/10 8/10
  116. Factor Oracle Algorithm - Construction Algorithm 3 Length Common Suffix

    Algorithm 1: function LengthCommonSuffix(π1, π2 ) 2: if S(π1) = π2 then 3: return lrs(π1) 4: else 5: while S(π1) ̸= S(π2) do 6: π2 ← S(π2) 7: end while 8: end if 9: return min(lrs(π1), lrs(π2)) 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 2 m = 10 π1 = 10 π2 = 3 lcs(10, 3) = Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 8/10 8/10
  117. Factor Oracle Algorithm - Construction Algorithm 3 Length Common Suffix

    Algorithm 1: function LengthCommonSuffix(π1, π2 ) 2: if S(π1) = π2 then 3: return lrs(π1) 4: else 5: while S(π1) ̸= S(π2) do 6: π2 ← S(π2) 7: end while 8: end if 9: return min(lrs(π1), lrs(π2)) 10: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 2 m = 10 π1 = 10 π2 = 3 lcs(10, 3) = 1 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 8/10 8/10
  118. Factor Oracle Algorithm - Construction Algorithm 4 Find Better Algorithm

    1: function FindBetter(i, σ) 2: for all the elements j of T(i) in increasing order do 3: if lrs(j) = lrs(i) and p[j − lrs(i)] = σ then 4: return j 5: end if 6: end for 7: return 0 8: end function Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 9/10 9/10
  119. Factor Oracle Algorithm - Construction Algorithm 4 Find Better Algorithm

    1: function FindBetter(i, σ) 2: for all the elements j of T(S(i)) in increasing order do 3: if lrs(j) = lrs(i) and p[j − lrs(i)] = σ then 4: return j 5: end if 6: end for 7: return 0 8: end function Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 9/10 9/10
  120. Factor Oracle Algorithm - Construction Algorithm 4 Find Better Algorithm

    1: function FindBetter(i, σ) 2: for all the elements j of T(S(i)) in increasing order do 3: if lrs(j) = lrs(i) and p[j − lrs(i)] = σ then 4: return j 5: end if 6: end for 7: return 0 8: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 2 m = 10 i = 11 σ = a FindBetter(11, a) = Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 9/10 9/10
  121. Factor Oracle Algorithm - Construction Algorithm 4 Find Better Algorithm

    1: function FindBetter(i, σ) 2: for all the elements j of T(S(i)) in increasing order do 3: if lrs(j) = lrs(i) and p[j − lrs(i)] = σ then 4: return j 5: end if 6: end for 7: return 0 8: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 2 m = 10 i = 11 σ = a FindBetter(11, a) = Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 9/10 9/10
  122. Factor Oracle Algorithm - Construction Algorithm 4 Find Better Algorithm

    1: function FindBetter(i, σ) 2: for all the elements j of T(S(i)) in increasing order do 3: if lrs(j) = lrs(i) and p[j − lrs(i)] = σ then 4: return j 5: end if 6: end for 7: return 0 8: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 2 m = 10 i = 11 σ = a FindBetter(11, a) = T(S(11)) = {7} Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 9/10 9/10
  123. Factor Oracle Algorithm - Construction Algorithm 4 Find Better Algorithm

    1: function FindBetter(i, σ) 2: for all the elements j of T(S(i)) in increasing order do 3: if lrs(j) = lrs(i) and p[j − lrs(i)] = σ then 4: return j 5: end if 6: end for 7: return 0 8: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 2 m = 10 i = 11 σ = a FindBetter(11, a) = T(S(11)) = {7} j = 7 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 9/10 9/10
  124. Factor Oracle Algorithm - Construction Algorithm 4 Find Better Algorithm

    1: function FindBetter(i, σ) 2: for all the elements j of T(S(i)) in increasing order do 3: if lrs(j) = lrs(i) and p[j − lrs(i)] = σ then 4: return j 5: end if 6: end for 7: return 0 8: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 2 m = 10 i = 11 σ = a FindBetter(11, a) = T(S(11)) = {7} j = 7 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 9/10 9/10
  125. Factor Oracle Algorithm - Construction Algorithm 4 Find Better Algorithm

    1: function FindBetter(i, σ) 2: for all the elements j of T(S(i)) in increasing order do 3: if lrs(j) = lrs(i) and p[j − lrs(i)] = σ then 4: return j 5: end if 6: end for 7: return 0 8: end function  # # +  # + /  # + p = 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 2 m = 10 i = 11 σ = a FindBetter(11, a) = 7 T(S(11)) = {7} j = 7 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 9/10 9/10
  126. Factor Oracle Algorithm - Improvisation Algorithm 5 FO-Generate function Require:

    Oracle P = p1, p2 ... pm in active state i, a generated sequence v, and a continuation parameter 0 ≤ q ≤ 1. 1: Generate uniformly distribute random number u 2: if u < q then 3: i ← i + 1 v ← vpi 4: else 5: Choose at random a symbol σ ∈ {σj | δ(S(i), σj ) ̸= ⊥} 6: i ← δ(S(i), σ) v ← vσ 7: end if 8: return Sequence v Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 10/10 10/10
  127. Factor Oracle Algorithm - Improvisation Algorithm 5 FO-Generate function Require:

    Oracle P = p1, p2 ... pm in active state i, a generated sequence v, and a continuation parameter 0 ≤ q ≤ 1. 1: Generate uniformly distribute random number u 2: if u < q then 3: i ← i + 1 v ← vpi 4: else 5: Choose at random a symbol σ ∈ {σj | δ(S(i), σj ) ̸= ⊥} 6: i ← δ(S(i), σ) v ← vσ 7: end if 8: return Sequence v 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 2 v = cabc q = 0.5 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 10/10 10/10
  128. Factor Oracle Algorithm - Improvisation Algorithm 5 FO-Generate function Require:

    Oracle P = p1, p2 ... pm in active state i, a generated sequence v, and a continuation parameter 0 ≤ q ≤ 1. 1: Generate uniformly distribute random number u 2: if u < q then 3: i ← i + 1 v ← vpi 4: else 5: Choose at random a symbol σ ∈ {σj | δ(S(i), σj ) ̸= ⊥} 6: i ← δ(S(i), σ) v ← vσ 7: end if 8: return Sequence v 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 2 v = cabc q = 0.5 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 10/10 10/10
  129. Factor Oracle Algorithm - Improvisation Algorithm 5 FO-Generate function Require:

    Oracle P = p1, p2 ... pm in active state i, a generated sequence v, and a continuation parameter 0 ≤ q ≤ 1. 1: Generate uniformly distribute random number u 2: if u < q then 3: i ← i + 1 v ← vpi 4: else 5: Choose at random a symbol σ ∈ {σj | δ(S(i), σj ) ̸= ⊥} 6: i ← δ(S(i), σ) v ← vσ 7: end if 8: return Sequence v 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 2 v = cabc q = 0.5 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 10/10 10/10
  130. Factor Oracle Algorithm - Improvisation Algorithm 5 FO-Generate function Require:

    Oracle P = p1, p2 ... pm in active state i, a generated sequence v, and a continuation parameter 0 ≤ q ≤ 1. 1: Generate uniformly distribute random number u 2: if u < q then 3: i ← i + 1 v ← vpi 4: else 5: Choose at random a symbol σ ∈ {σj | δ(S(i), σj ) ̸= ⊥} 6: i ← δ(S(i), σ) v ← vσ 7: end if 8: return Sequence v 0 1  2 # 3 # 4 + 5  6 # 7 + 8 / 9  10 # 11 + b c c d d 0 0 0 1 0 1 2 2 0 1 2 2 v = cabca q = 0.5 Jaime Arias - Equipe PoSET, Inria Bordeaux Sud-Ouest, LaBRI Factor Oracle for Machine Improvisation 10/10 10/10
  131. Thank you for your attention!

  132. Factor Oracle for Machine Improvisation Jaime Arias Université de Bordeaux,

    LaBRI, UMR 5800 Inria - Bordeaux Sud-Ouest Septembre 2016
  133. References Gerard Assayag and Shlomo Dubnov. Using Factor Oracles for

    Machine Improvisation. Soft Computing, 8(9), sep 2004. Shlomo Dubnov, Gérard Assayag, and Arshia Cont. Audio Oracle: a New Algorithm for Fast Learning of audio Structures. In International Computer Music Conference, 2007. Arnaud Lefebvre, Thierry Lecroq, and Joël Alexandre. An Improved Algorithm for Finding Longest Repeats with a Modified Factor Oracle. J. Autom. Lang. Comb., 8(4):647–657, 2003. Greg Surges and Shlomo Dubnov. Feature Selection and Composition Using PyOracle. In AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, 2013.