B B B B B B B B @ (t1) (t2) . . . (ti) . . . (tn) 1 C C C C C C C C A c(b) = 0 B B B B B B B B @ 10 10 . . . 20 . . . 0 1 C C C C C C C C A w(b) = 0 B B B B B B B B @ False True . . . False . . . False 1 C C C C C C C C A
ࠂओͷಛ ϝσΟΞͷಛ Yi ⇠ Be(pi) ͨͩ͠ ͜ͷ Λ࠷ਪఆ͢Εྑ͍ ͜ͷϞσϧΛLogistic Regressionͱ͍͏ pi = f ✓ ( x ) = 1 1 + e x = ( X j ✓jXij + ✓0) ✓0, ✓1, · · · , ✓f minimize L ( ✓ ) = log p ( Y |X, ✓ ) = n X i=0 log p ( Yi |Xi, ✓ )
j ✓jXij + ✓0) ʦࢀߟʧަޓ࡞༻߲ΛೖΕΕϩδεςΟοΫճؼͰඇઢܗՄೳʹͳΔ͜ͱ͋Δ http://tjo.hatenablog.com/entry/2015/03/26/190000 wikimedia Commons File:Overfitting.svg pi = ( X j ✓jXij + X j X k j+1 wjkXjXk + ✓0)
j X k j+1 wjkXjXk + ✓0) pi = ( X j ✓jXij + X j X k j+1 hvj, vk iXjXk + ✓0) ( ( ' ( ( ( ( W V f f f k <͘͢͝খ͍̺͞ V ⇤ Steffen Rendle, Factorization Machines [ICDM 2010]
+ ✓0 Optim Modeling ※Ϟσϧࣜμϛʔ ࡐʹ߹Θͤͯదʹ σβΠϯ͢Δ y = X i ✓i log(xi + 1) + ✓0 y = X i ✓i log(xi + 1) + ✓0 Optim Modeling y = X i ✓i log(xi + 1) + ✓0 ͜ΕΛ܁Γฦͯ͠࠷దͳ༧ࢉΛ୳Δ ʦʧച্Λ֫ಘͭͭ͠ɼޮΑ͘୳ࡧ͢Δʹʁ