Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
少なめの容量でEFSを使うときの速度の話
Search
hmatsu47
PRO
July 26, 2021
Technology
1
1.3k
少なめの容量でEFSを使うときの速度の話
JAWS-UG 名古屋 Infrastructure as Code について学ぶ 2021/07/26 LT
hmatsu47
PRO
July 26, 2021
Tweet
Share
More Decks by hmatsu47
See All by hmatsu47
AWS で試して学ぶ IPv6
hmatsu47
PRO
0
10
今年の MySQL/HeatWave ネタ登壇振り返り
hmatsu47
PRO
0
12
今年の DB ネタ登壇振り返り
hmatsu47
PRO
0
10
RDS/Aurora アップデート 2025
hmatsu47
PRO
0
20
YAPC::Fukuoka 2025 現地ハイブリッド参加の旅
hmatsu47
PRO
0
9
今年の FESTA で初当日スタッフ+登壇してきました
hmatsu47
PRO
0
15
攻略!Aurora DSQL の OCC(楽観的同時実行制御)
hmatsu47
PRO
0
9
PostgreSQL でもできる!GraphRAG
hmatsu47
PRO
0
13
Aurora DSQL のトランザクション(スナップショット分離と OCC)
hmatsu47
PRO
0
16
Other Decks in Technology
See All in Technology
サラリーマンソフトウェアエンジニアのキャリア
yuheinakasaka
37
17k
松尾研LLM講座2025 応用編Day3「軽量化」 講義資料
aratako
15
4.9k
「駆動」って言葉、なんかカッコイイ_Mitz
comucal
PRO
0
140
スクラムマスターが スクラムチームに入って取り組む5つのこと - スクラムガイドには書いてないけど入った当初から取り組んでおきたい大切なこと -
scrummasudar
2
1.9k
Everything As Code
yosuke_ai
0
510
モノタロウ x クリエーションラインで実現する チームトポロジーにおける プラットフォームチーム・ ストリームアラインドチームの 効果的なコラボレーション
creationline
0
680
Introduction to Sansan, inc / Sansan Global Development Center, Inc.
sansan33
PRO
0
2.9k
AWS re:Invent2025最新動向まとめ(NRIグループre:Cap 2025)
gamogamo
0
170
AI: The stuff that nobody shows you
jnunemaker
PRO
1
160
All About Sansan – for New Global Engineers
sansan33
PRO
1
1.3k
迷わない!AI×MCP連携のリファレンスアーキテクチャ完全ガイド
cdataj
0
410
ECS_EKS以外の選択肢_ROSA入門_.pdf
masakiokuda
1
120
Featured
See All Featured
HDC tutorial
michielstock
1
310
We Are The Robots
honzajavorek
0
130
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
51k
The Limits of Empathy - UXLibs8
cassininazir
1
200
How to Ace a Technical Interview
jacobian
281
24k
The Director’s Chair: Orchestrating AI for Truly Effective Learning
tmiket
1
74
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
51
Paper Plane
katiecoart
PRO
0
45k
RailsConf 2023
tenderlove
30
1.3k
Rails Girls Zürich Keynote
gr2m
95
14k
Pawsitive SEO: Lessons from My Dog (and Many Mistakes) on Thriving as a Consultant in the Age of AI
davidcarrasco
0
41
How to audit for AI Accessibility on your Front & Back End
davetheseo
0
140
Transcript
少なめの容量で EFS を使うときの速度の話 JAWS-UG 名古屋 Infrastructure as Code について学ぶ 2021/07/26
まつひさ(hmatsu47)
自己紹介 松久裕保(@hmatsu47) https://qiita.com/hmatsu47 名古屋で Web インフラのお守り係をしています (ほかに書くことがなくなったので省略) 2
今日の内容(注 : ほぼ JAWS-UG 浜松の再演です) • EFS とは • EFS
の性能(ざっくり) ◦ AWS のストレージ特性→容量に比例してスループット UP ◦ 分散システム→ノード増・NW 遅延増で整合性確保に時間が必要 • 容量が少ない状況で高速化するには ◦ 並列処理をする ◦ 1AZ で良い場合は 1 ゾーンストレージクラスを使う 3
余談 : IaC についての私見 • まじめに運用するのはつらい ◦ コードと実体の差異を生じないように維持 ▪ つらい
◦ 組織内での技術の伝承 ▪ つらい ◦ 本番環境の変更のためにコード・テンプレート書き換え→反映 ▪ 怖い • イミュータブルでないインフラ要素が意外と多い 4
余談 : IaC についての私見 • 割り切る ◦ CFn : 環境の初期構築(VPC
など)用に特化 ▪ 例 : 実験環境を元にステージング構築用にテンプレート作成する • その後、本番環境・DR 環境の構築に利用する ▪ 作成対象を限定する(ほどほどに分割) ◦ 展開後の作業でテンプレートと実体の差異が生じても許容 ◦ CLI/SDK : 既成環境の起動停止に使う ▪ 定期実行(Lambda から)・DR 起動など 5
EFS とは • フルマネージドの分散・共有ファイルシステム ◦ https://aws.amazon.com/jp/efs/ • NFSv4 プロトコルでアクセス可能 ◦
NFS v4.0 および v4.1 をサポート • 高可用性・高耐久性 ◦ 1 ゾーンストレージクラスと標準ストレージクラス ▪ 1 ゾーン内または 1 リージョン内で冗長化 ◦ 耐久性は 99.999999999% 6
EFS の性能 • 設定 : パフォーマンスモードとスループットモード ◦ パフォーマンスモード : 汎用
/ 最大 I/O ▪ 通常は汎用モードを選択 ▪ 最大 I/O モードではメタデータ処理のレイテンシが若干増える ◦ スループットモード : バースト / プロビジョニング ▪ 今回はバーストモードを選択 • 今回の実験の範囲ではバーストモードのスループットを使い切るところまで行か ない 7
EFS の性能 • 汎用パフォーマンス&バーストスループットモードでは ◦ 容量が大きいほどスループットが高い ▪ クレジットが残っている範囲で ▪ AWS
のストレージサービス共通の特性 • 分散システムとしての特性 ◦ 書き込み処理 : 整合性確保に時間が掛かる ▪ ノードの数が増え、ネットワークのレイテンシが大きくなるほど ◦ 整合性確保の問題がなければ、並列処理は得意 8
小容量で使うときの EFS の弱点 • とにかく書き込みが遅い ◦ 分散・共有ファイルシステムなので… • 例えば、Amazon Linux
2 で普通に rsync してみると ◦ m5.large で /usr/(1.1GB)から別のファイルシステムにコピー rsync -avz /usr/ /mnt/【コピー先】/usr/ ◦ 対 EBS(gp3 IOPS:3000) : 00 分 54 秒 ◦ 対 EFS(1 ゾーン・バースト) : 13 分 51 秒(15.4 倍遅い) ◦ 対 EFS(標準・同) : 25 分 58 秒(28.9 倍遅い) 9
処理を並列化してみる • rsync を xargs と組み合わせる ls -1 /usr |
xargs -I {arg} -P 【並列数】 -n 1 rsync -avz /usr/{arg} /mnt/【コピー先】/usr/ 10 コピー先 通常(1 並列) 2 並列 4 並列 EBS(gp3 IOPS:3000) 00:54 - 00:42 - 00:39 - EFS(1 ゾーン・バースト) 13:51 15.4 倍遅い 09:09 13.1 倍遅い 06:23 9.8 倍遅い EFS(標準・同) 25:58 28.9 倍遅い 16:35 23.7 倍遅い 11:28 17.6 倍遅い
処理を並列化してみる 11
補足と注意点 • 並列数をもっと増やすとさらに高速化する ◦ m5.large (2vCPU)のように vCPU 数の少ないインスタンスで も 10
~ 16 並列ぐらいは行ける ▪ /usr/ 直下のディレクトリの数が少なく中のファイル容量や数のバランスが 悪いので今回は 4 並列まで(バランスが良いと線形に性能向上する) • 一部の NFS クライアントでは並列化の効果が出ない ◦ RHEL 6 など ◦ 処理を直列化してしまうため 12
参考:読み取り(find)並列化 • 通常 : find -type f -exec cat {}
\; • 並列 : find -type f -print0 | xargs -0 -I {arg} -P 【並列数】 -n 1 cat {arg} ※都度 OS を再起動し、OS のディスクキャッシュがクリアされた状態で計測 13 読み取り対象 通常 (1 並列) 2 並列 4 並列 8 並列 EBS(gp3 IOPS:3000) 00:46 00:24 00:17 00:16 EFS(1 ゾーン・バースト) 02:43 01:05 00:36 00:28 EFS(標準・同) 02:47 01:10 00:35 00:26
参考:読み取り(find)並列化 14
まとめ • 処理を並列化すると速くなる ◦ 1 インスタンスからのアクセスでも ◦ vCPU 数が少なくても •
1 ゾーンストレージクラスのほうが速い ◦ 要件を満たす場合は 1 ゾーンストレージクラスも選択肢に • 書き込みと読み取りでは少し傾向が違う ◦ EBS との差は読み取りのほうが小さい ◦ 読み取りでは 1 ゾーンと標準の性能差は(ほぼ)ない 15
おまけ : バッチ処理などを並列化する際の注意点 • レースコンディション(スレッド間競合)に注意 ◦ Web アプリケーションなどと同様、スレッド間の競合を起こさな いよう注意してプログラミングする ▪
非スレッドセーフな処理を書かない • ネットワークのコネクション数爆発に注意 ◦ バッチ処理内で EFS 以外(RDS など)に接続している場合 ◦ RDS コネクション数とは別に、TCP の TIME_WAIT 問題も ▪ (recycle ではなく)reuse であってもトラブルが生じるケースも 16