Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Stateful & Reactive Streaming Apps without Data...

Stateful & Reactive Streaming Apps without Databases @MeetUp OpenBlend SLO 2019

as presented at OpenBlend - Slovenian Java User Group

Abstract:

Time and again we should move out of our comfort zone and take the opportunity to experiment with new ways to build applications. Based on an easy to understand example we will look at a different, for some of us unconventional and radical way to build modern data-centric applications. For that purpose, we are going to discuss a stateful streaming application on top of Apache Kafka and integrate with Spring Boot 2.0 in order to provide a reactive WebAPI which allows clients to consume data changes in near real-time. All of this without explicitly using or managing an external database.

GitHub Repository: https://github.com/hpgrahsl/meetup-openblend-slo-2019

Hans-Peter Grahsl

February 21, 2019
Tweet

More Decks by Hans-Peter Grahsl

Other Decks in Programming

Transcript

  1. Stateful & Reactive Streaming Apps without Databases Kafka Streams ❤

    Spring Boot @hpgrahsl | OpenBlend Java User Group, 21st Feb. 2019, Slovenia
  2. $ whoami • Hans-Peter Grahsl • working & living in

    Graz • technical trainer at • independent consultant & engineer • associate lecturer • " irregular conference speaker @hpgrahsl | OpenBlend Java User Group, 21st Feb. 2019, Slovenia 2
  3. challenges in today's data architectures • rising number of apps

    producing + consuming data • need to integrate ever more data sources • heterogeneous environments all over the place • traditional technologies may struggle to cope with this @hpgrahsl | OpenBlend Java User Group, 21st Feb. 2019, Slovenia 3
  4. challenges may lead to a GIANT MESS @hpgrahsl | OpenBlend

    Java User Group, 21st Feb. 2019, Slovenia 4
  5. much more than messaging • Apache Kafka is offering 3

    key capabilities • publish / subscribe to streams of records • (permanently) store streams of records • process streams of records in near real-time fault-tolerance & horizontal scalability @hpgrahsl | OpenBlend Java User Group, 21st Feb. 2019, Slovenia 7
  6. Kafka Streams API • stream processing with a library only

    approach • lightweight applications • build however & deploy wherever you like • NO(!) additional clusters or frameworks e.g. • Processor API & Streams DSL • configurable delivery guarantees @hpgrahsl | OpenBlend Java User Group, 21st Feb. 2019, Slovenia 12
  7. KSQL • SQL only (not embedded) • NO(!) coding skills

    required • extremely low entry barrier • familiar syntax and semantics • concise and expressive • joins, aggregations, windowing • UD(A)Fs and UDTFs still pending... • built on top of Kafka Streams @hpgrahsl | OpenBlend Java User Group, 21st Feb. 2019, Slovenia 14
  8. emoji tracking | step 1 store ingest subset of public

    live tweets from Twitter @hpgrahsl | OpenBlend Java User Group, 21st Feb. 2019, Slovenia 23
  9. emoji tracking | step 2 process extract emojis - group

    & count them - maintain top N @hpgrahsl | OpenBlend Java User Group, 21st Feb. 2019, Slovenia 24
  10. emoji tracking | step 3 query single emoji count -

    all emoji counts - top N emojis @hpgrahsl | OpenBlend Java User Group, 21st Feb. 2019, Slovenia 25
  11. emoji tracking | step 4 notify consumable near-realtime change streams

    of updates @hpgrahsl | OpenBlend Java User Group, 21st Feb. 2019, Slovenia 26
  12. example: step 1 ingest tweets • using Kafka Connect •

    e.g. this community connector https://github.com/jcustenborder/kafka- connect-twitter • configure the connector (JSON) • manage connector via REST-like API create | pause | resume | delete | status @hpgrahsl | OpenBlend Java User Group, 21st Feb. 2019, Slovenia 29
  13. { "name": "tweets-twitter-source", "config": { "connector.class": "c.g.j.k.c.t.TwitterSourceConnector", "twitter.oauth.accessToken": "...", "twitter.oauth.consumerSecret":

    ...", "twitter.oauth.consumerKey": "...", "twitter.oauth.accessTokenSecret": "...", "kafka.status.topic": "tweets", "process.deletes": false, "key.converter": "org.apache.kafka.connect.json.JsonConverter", "key.converter.schemas.enable": false, "value.converter": "org.apache.kafka.connect.json.JsonConverter", "value.converter.schemas.enable": false, "filter.keywords": "..." } } @hpgrahsl | OpenBlend Java User Group, 21st Feb. 2019, Slovenia 30
  14. ! ! ! ! NO CODE! ! ! ! !

    @hpgrahsl | OpenBlend Java User Group, 21st Feb. 2019, Slovenia 32
  15. example: step 2 process tweets • using Kafka Streams high-level

    DSL • grouping and counting emojis • updating top N emoji counts • map tweets to emoji occurrences • only a few lines of Java @hpgrahsl | OpenBlend Java User Group, 21st Feb. 2019, Slovenia 33
  16. calculate emoji counts • It all starts with tweets like

    this... ! this is a twitter status " text with ## five emojis @hpgrahsl | OpenBlend Java User Group, 21st Feb. 2019, Slovenia 34
  17. calculate emoji counts Key Value raw input ID ! this

    is a twitter ! status " text with ## five emojis extract emoji list ID [!,!,",#,#] @hpgrahsl | OpenBlend Java User Group, 21st Feb. 2019, Slovenia 35
  18. calculate emoji counts Key Value flatten the list ID !

    ID ! ID " ID # ID # @hpgrahsl | OpenBlend Java User Group, 21st Feb. 2019, Slovenia 36
  19. calculate emoji counts Key Value set keys to values !

    "" ! "" " "" # "" # "" finally group & count by key @hpgrahsl | OpenBlend Java User Group, 21st Feb. 2019, Slovenia 37
  20. result: continuously updated KTable with emoji counts Key Value !

    2 " 1 # 2 ... ... @hpgrahsl | OpenBlend Java User Group, 21st Feb. 2019, Slovenia 38
  21. 1:1 mapping to KStreams API KTable<String, Long> emojiCounts = tweets.map((id,tweet)

    -> KeyValue.pair(id, EmojiUtils...)) .flatMapValues(emojis -> emojis) .map((id,emoji) -> KeyValue.pair(emoji, "")) .groupByKey(...).count(...); @hpgrahsl | OpenBlend Java User Group, 21st Feb. 2019, Slovenia
  22. example: step 3 query results • access to state stores

    with interactive queries • KStreams offers all needed metadata • ! RPC integration left for developers > Reactive WebAPI powered by Spring Boot 2.0 < @hpgrahsl | OpenBlend Java User Group, 21st Feb. 2019, Slovenia 41
  23. REST controller @RestController @RequestMapping("interactive/queries/") @CrossOrigin(origins = "*") public class StateStoreController

    { private final StateStoreService service; [...] } @hpgrahsl | OpenBlend Java User Group, 21st Feb. 2019, Slovenia 42
  24. REST controller methods @GetMapping("emojis/{code}") public Mono<ResponseEntity<EmojiCount>> getEmoji(@PathVariable String code) {

    return service.querySingleEmojiCount(code); } @GetMapping("emojis") public Flux<EmojiCount> getEmojis() { return service.queryAllEmojiCounts(); } @hpgrahsl | OpenBlend Java User Group, 21st Feb. 2019, Slovenia 43
  25. state store access in service StreamsMetadata metadata = kafkaStreams.metadataForKey( "your-store-name",

    emoji, Serializer... ); @hpgrahsl | OpenBlend Java User Group, 21st Feb. 2019, Slovenia 44
  26. state store access in service if(itsMe.equals(metadata.hostInfo())) { ReadOnlyKeyValueStore<String,Long> kvStoreEmojiCounts =

    kafkaStreams.store("your-store-name", QueryableStoreTypes.keyValueStore()); Long count = kvStoreEmojiCounts.get(emoji); return Mono.just( new ResponseEntity<>(new EmojiCount(...),HttpStatus.OK) ); } @hpgrahsl | OpenBlend Java User Group, 21st Feb. 2019, Slovenia 45
  27. state store access in service String location = String.format("http://%s:%d/.../%s", metadata.host(),metadata.port(),emoji);

    return Mono.just( ResponseEntity.status(HttpStatus.FOUND) .location(URI.create(location)).build() ); @hpgrahsl | OpenBlend Java User Group, 21st Feb. 2019, Slovenia 46
  28. example: step 4 real-time notifications • reactively consume from changelog

    topics • stream any changes to clients using SSE > Project Reactor's reactor-kafka < @hpgrahsl | OpenBlend Java User Group, 21st Feb. 2019, Slovenia 49
  29. notifications via SSE @GetMapping(path = "emojis/updates/notify", produces = MediaType.TEXT_EVENT_STREAM_VALUE) public

    Flux<EmojiCount> getEmojiCountsStream() { return service.consumeEmojiCountsStream(); } @hpgrahsl | OpenBlend Java User Group, 21st Feb. 2019, Slovenia 50